using UnityEngine; using System.Collections.Generic; using System; namespace Pathfinding { using Pathfinding.Util; /// <summary>Contains various spline functions.</summary> public static class AstarSplines { public static Vector3 CatmullRom (Vector3 previous, Vector3 start, Vector3 end, Vector3 next, float elapsedTime) { // References used: // p.266 GemsV1 // // tension is often set to 0.5 but you can use any reasonable value: // http://www.cs.cmu.edu/~462/projects/assn2/assn2/catmullRom.pdf // // bias and tension controls: // http://local.wasp.uwa.edu.au/~pbourke/miscellaneous/interpolation/ float percentComplete = elapsedTime; float percentCompleteSquared = percentComplete * percentComplete; float percentCompleteCubed = percentCompleteSquared * percentComplete; return previous * (-0.5F*percentCompleteCubed + percentCompleteSquared - 0.5F*percentComplete) + start * (1.5F*percentCompleteCubed + -2.5F*percentCompleteSquared + 1.0F) + end * (-1.5F*percentCompleteCubed + 2.0F*percentCompleteSquared + 0.5F*percentComplete) + next * (0.5F*percentCompleteCubed - 0.5F*percentCompleteSquared); } /// <summary>Returns a point on a cubic bezier curve. t is clamped between 0 and 1</summary> public static Vector3 CubicBezier (Vector3 p0, Vector3 p1, Vector3 p2, Vector3 p3, float t) { t = Mathf.Clamp01(t); float t2 = 1-t; return t2*t2*t2 * p0 + 3 * t2*t2 * t * p1 + 3 * t2 * t*t * p2 + t*t*t * p3; } /// <summary>Returns the derivative for a point on a cubic bezier curve. t is clamped between 0 and 1</summary> public static Vector3 CubicBezierDerivative (Vector3 p0, Vector3 p1, Vector3 p2, Vector3 p3, float t) { t = Mathf.Clamp01(t); float t2 = 1-t; return 3*t2*t2*(p1-p0) + 6*t2*t*(p2 - p1) + 3*t*t*(p3 - p2); } /// <summary>Returns the second derivative for a point on a cubic bezier curve. t is clamped between 0 and 1</summary> public static Vector3 CubicBezierSecondDerivative (Vector3 p0, Vector3 p1, Vector3 p2, Vector3 p3, float t) { t = Mathf.Clamp01(t); float t2 = 1-t; return 6*t2*(p2 - 2*p1 + p0) + 6*t*(p3 - 2*p2 + p1); } } /// <summary> /// Various vector math utility functions. /// Version: A lot of functions in the Polygon class have been moved to this class /// the names have changed slightly and everything now consistently assumes a left handed /// coordinate system now instead of sometimes using a left handed one and sometimes /// using a right handed one. This is why the 'Left' methods in the Polygon class redirect /// to methods named 'Right'. The functionality is exactly the same. /// /// Note the difference between segments and lines. Lines are infinitely /// long but segments have only a finite length. /// </summary> public static class VectorMath { /// <summary> /// Complex number multiplication. /// Returns: a * b /// /// Used to rotate vectors in an efficient way. /// /// See: https://en.wikipedia.org/wiki/Complex_number<see cref="Multiplication_and_division"/> /// </summary> public static Vector2 ComplexMultiply (Vector2 a, Vector2 b) { return new Vector2(a.x * b.x - a.y * b.y, a.x * b.y + a.y * b.x); } /// <summary> /// Complex number multiplication. /// Returns: a * conjugate(b) /// /// Used to rotate vectors in an efficient way. /// /// See: https://en.wikipedia.org/wiki/Complex_number<see cref="Multiplication_and_division"/> /// See: https://en.wikipedia.org/wiki/Complex_conjugate /// </summary> public static Vector2 ComplexMultiplyConjugate (Vector2 a, Vector2 b) { return new Vector2(a.x * b.x + a.y * b.y, a.y * b.x - a.x * b.y); } /// <summary> /// Returns the closest point on the line. /// The line is treated as infinite. /// See: ClosestPointOnSegment /// See: ClosestPointOnLineFactor /// </summary> public static Vector3 ClosestPointOnLine (Vector3 lineStart, Vector3 lineEnd, Vector3 point) { Vector3 lineDirection = Vector3.Normalize(lineEnd - lineStart); float dot = Vector3.Dot(point - lineStart, lineDirection); return lineStart + (dot*lineDirection); } /// <summary> /// Factor along the line which is closest to the point. /// Returned value is in the range [0,1] if the point lies on the segment otherwise it just lies on the line. /// The closest point can be calculated using (end-start)*factor + start. /// /// See: ClosestPointOnLine /// See: ClosestPointOnSegment /// </summary> public static float ClosestPointOnLineFactor (Vector3 lineStart, Vector3 lineEnd, Vector3 point) { var dir = lineEnd - lineStart; float sqrMagn = dir.sqrMagnitude; if (sqrMagn <= 0.000001) return 0; return Vector3.Dot(point - lineStart, dir) / sqrMagn; } /// <summary> /// Factor along the line which is closest to the point. /// Returned value is in the range [0,1] if the point lies on the segment otherwise it just lies on the line. /// The closest point can be calculated using (end-start)*factor + start /// </summary> public static float ClosestPointOnLineFactor (Int3 lineStart, Int3 lineEnd, Int3 point) { var lineDirection = lineEnd - lineStart; float magn = lineDirection.sqrMagnitude; float closestPoint = (float)Int3.DotLong(point - lineStart, lineDirection); if (magn != 0) closestPoint /= magn; return closestPoint; } /// <summary> /// Factor of the nearest point on the segment. /// Returned value is in the range [0,1] if the point lies on the segment otherwise it just lies on the line. /// The closest point can be calculated using (end-start)*factor + start; /// </summary> public static float ClosestPointOnLineFactor (Int2 lineStart, Int2 lineEnd, Int2 point) { var lineDirection = lineEnd - lineStart; double magn = lineDirection.sqrMagnitudeLong; double closestPoint = Int2.DotLong(point - lineStart, lineDirection); if (magn != 0) closestPoint /= magn; return (float)closestPoint; } /// <summary> /// Returns the closest point on the segment. /// The segment is NOT treated as infinite. /// See: ClosestPointOnLine /// See: ClosestPointOnSegmentXZ /// </summary> public static Vector3 ClosestPointOnSegment (Vector3 lineStart, Vector3 lineEnd, Vector3 point) { var dir = lineEnd - lineStart; float sqrMagn = dir.sqrMagnitude; if (sqrMagn <= 0.000001) return lineStart; float factor = Vector3.Dot(point - lineStart, dir) / sqrMagn; return lineStart + Mathf.Clamp01(factor)*dir; } /// <summary> /// Returns the closest point on the segment in the XZ plane. /// The y coordinate of the result will be the same as the y coordinate of the point parameter. /// /// The segment is NOT treated as infinite. /// See: ClosestPointOnSegment /// See: ClosestPointOnLine /// </summary> public static Vector3 ClosestPointOnSegmentXZ (Vector3 lineStart, Vector3 lineEnd, Vector3 point) { lineStart.y = point.y; lineEnd.y = point.y; Vector3 fullDirection = lineEnd-lineStart; Vector3 fullDirection2 = fullDirection; fullDirection2.y = 0; float magn = fullDirection2.magnitude; Vector3 lineDirection = magn > float.Epsilon ? fullDirection2/magn : Vector3.zero; float closestPoint = Vector3.Dot((point-lineStart), lineDirection); return lineStart+(Mathf.Clamp(closestPoint, 0.0f, fullDirection2.magnitude)*lineDirection); } /// <summary> /// Returns the approximate shortest squared distance between x,z and the segment p-q. /// The segment is not considered infinite. /// This function is not entirely exact, but it is about twice as fast as DistancePointSegment2. /// TODO: Is this actually approximate? It looks exact. /// </summary> public static float SqrDistancePointSegmentApproximate (int x, int z, int px, int pz, int qx, int qz) { float pqx = (float)(qx - px); float pqz = (float)(qz - pz); float dx = (float)(x - px); float dz = (float)(z - pz); float d = pqx*pqx + pqz*pqz; float t = pqx*dx + pqz*dz; if (d > 0) t /= d; if (t < 0) t = 0; else if (t > 1) t = 1; dx = px + t*pqx - x; dz = pz + t*pqz - z; return dx*dx + dz*dz; } /// <summary> /// Returns the approximate shortest squared distance between x,z and the segment p-q. /// The segment is not considered infinite. /// This function is not entirely exact, but it is about twice as fast as DistancePointSegment2. /// TODO: Is this actually approximate? It looks exact. /// </summary> public static float SqrDistancePointSegmentApproximate (Int3 a, Int3 b, Int3 p) { float pqx = (float)(b.x - a.x); float pqz = (float)(b.z - a.z); float dx = (float)(p.x - a.x); float dz = (float)(p.z - a.z); float d = pqx*pqx + pqz*pqz; float t = pqx*dx + pqz*dz; if (d > 0) t /= d; if (t < 0) t = 0; else if (t > 1) t = 1; dx = a.x + t*pqx - p.x; dz = a.z + t*pqz - p.z; return dx*dx + dz*dz; } /// <summary> /// Returns the squared distance between p and the segment a-b. /// The line is not considered infinite. /// </summary> public static float SqrDistancePointSegment (Vector3 a, Vector3 b, Vector3 p) { var nearest = ClosestPointOnSegment(a, b, p); return (nearest-p).sqrMagnitude; } /// <summary> /// 3D minimum distance between 2 segments. /// Input: two 3D line segments S1 and S2 /// Returns: the shortest squared distance between S1 and S2 /// </summary> public static float SqrDistanceSegmentSegment (Vector3 s1, Vector3 e1, Vector3 s2, Vector3 e2) { Vector3 u = e1 - s1; Vector3 v = e2 - s2; Vector3 w = s1 - s2; double a = Vector3.Dot(u, u); // always >= 0 double b = Vector3.Dot(u, v); double c = Vector3.Dot(v, v); // always >= 0 double d = Vector3.Dot(u, w); double e = Vector3.Dot(v, w); double D = a*c - b*b; // always >= 0 double sc, sN, sD = D; // sc = sN / sD, default sD = D >= 0 double tc, tN, tD = D; // tc = tN / tD, default tD = D >= 0 // compute the line parameters of the two closest points // D is approximately |v|^2|u|^2*(1-cos alpha), where alpha is the angle between the lines if (D < 0.00001) { // the lines are almost parallel sN = 0.0f; // force using point P0 on segment S1 sD = 1.0f; // to prevent possible division by 0.0 later tN = e; tD = c; } else { // get the closest points on the infinite lines sN = (b*e - c*d); tN = (a*e - b*d); if (sN < 0.0) { // sc < 0 => the s=0 edge is visible sN = 0.0; tN = e; tD = c; } else if (sN > sD) { // sc > 1 => the s=1 edge is visible sN = sD; tN = e + b; tD = c; } } if (tN < 0.0) { // tc < 0 => the t=0 edge is visible tN = 0.0; // recompute sc for this edge if (-d < 0.0f) sN = 0.0f; else if (-d > a) sN = sD; else { sN = -d; sD = a; } } else if (tN > tD) { // tc > 1 => the t=1 edge is visible tN = tD; // recompute sc for this edge if ((-d + b) < 0.0f) sN = 0; else if ((-d + b) > a) sN = sD; else { sN = (-d + b); sD = a; } } // finally do the division to get sc and tc sc = (Math.Abs(sN) < 0.00001f ? 0.0 : sN / sD); tc = (Math.Abs(tN) < 0.00001f ? 0.0 : tN / tD); // get the difference of the two closest points Vector3 dP = w + ((float)sc * u) - ((float)tc * v); // = S1(sc) - S2(tc) return dP.sqrMagnitude; // return the closest distance } /// <summary>Squared distance between two points in the XZ plane</summary> public static float SqrDistanceXZ (Vector3 a, Vector3 b) { var delta = a-b; return delta.x*delta.x+delta.z*delta.z; } /// <summary> /// Signed area of a triangle in the XZ plane multiplied by 2. /// This will be negative for clockwise triangles and positive for counter-clockwise ones /// </summary> public static long SignedTriangleAreaTimes2XZ (Int3 a, Int3 b, Int3 c) { return (long)(b.x - a.x) * (long)(c.z - a.z) - (long)(c.x - a.x) * (long)(b.z - a.z); } /// <summary> /// Signed area of a triangle in the XZ plane multiplied by 2. /// This will be negative for clockwise triangles and positive for counter-clockwise ones. /// </summary> public static float SignedTriangleAreaTimes2XZ (Vector3 a, Vector3 b, Vector3 c) { return (b.x - a.x) * (c.z - a.z) - (c.x - a.x) * (b.z - a.z); } /// <summary> /// Returns if p lies on the right side of the line a - b. /// Uses XZ space. Does not return true if the points are colinear. /// </summary> public static bool RightXZ (Vector3 a, Vector3 b, Vector3 p) { return (b.x - a.x) * (p.z - a.z) - (p.x - a.x) * (b.z - a.z) < -float.Epsilon; } /// <summary> /// Returns if p lies on the right side of the line a - b. /// Uses XZ space. Does not return true if the points are colinear. /// </summary> public static bool RightXZ (Int3 a, Int3 b, Int3 p) { return (long)(b.x - a.x) * (long)(p.z - a.z) - (long)(p.x - a.x) * (long)(b.z - a.z) < 0; } /// <summary> /// Returns which side of the line a - b that p lies on. /// Uses XZ space. /// </summary> public static Side SideXZ (Int3 a, Int3 b, Int3 p) { var s = (long)(b.x - a.x) * (long)(p.z - a.z) - (long)(p.x - a.x) * (long)(b.z - a.z); return s > 0 ? Side.Left : (s < 0 ? Side.Right : Side.Colinear); } /// <summary> /// Returns if p lies on the right side of the line a - b. /// Also returns true if the points are colinear. /// </summary> public static bool RightOrColinear (Vector2 a, Vector2 b, Vector2 p) { return (b.x - a.x) * (p.y - a.y) - (p.x - a.x) * (b.y - a.y) <= 0; } /// <summary> /// Returns if p lies on the right side of the line a - b. /// Also returns true if the points are colinear. /// </summary> public static bool RightOrColinear (Int2 a, Int2 b, Int2 p) { return (long)(b.x - a.x) * (long)(p.y - a.y) - (long)(p.x - a.x) * (long)(b.y - a.y) <= 0; } /// <summary> /// Returns if p lies on the left side of the line a - b. /// Uses XZ space. Also returns true if the points are colinear. /// </summary> public static bool RightOrColinearXZ (Vector3 a, Vector3 b, Vector3 p) { return (b.x - a.x) * (p.z - a.z) - (p.x - a.x) * (b.z - a.z) <= 0; } /// <summary> /// Returns if p lies on the left side of the line a - b. /// Uses XZ space. Also returns true if the points are colinear. /// </summary> public static bool RightOrColinearXZ (Int3 a, Int3 b, Int3 p) { return (long)(b.x - a.x) * (long)(p.z - a.z) - (long)(p.x - a.x) * (long)(b.z - a.z) <= 0; } /// <summary> /// Returns if the points a in a clockwise order. /// Will return true even if the points are colinear or very slightly counter-clockwise /// (if the signed area of the triangle formed by the points has an area less than or equals to float.Epsilon) /// </summary> public static bool IsClockwiseMarginXZ (Vector3 a, Vector3 b, Vector3 c) { return (b.x-a.x)*(c.z-a.z)-(c.x-a.x)*(b.z-a.z) <= float.Epsilon; } /// <summary>Returns if the points a in a clockwise order</summary> public static bool IsClockwiseXZ (Vector3 a, Vector3 b, Vector3 c) { return (b.x-a.x)*(c.z-a.z)-(c.x-a.x)*(b.z-a.z) < 0; } /// <summary>Returns if the points a in a clockwise order</summary> public static bool IsClockwiseXZ (Int3 a, Int3 b, Int3 c) { return RightXZ(a, b, c); } /// <summary>Returns true if the points a in a clockwise order or if they are colinear</summary> public static bool IsClockwiseOrColinearXZ (Int3 a, Int3 b, Int3 c) { return RightOrColinearXZ(a, b, c); } /// <summary>Returns true if the points a in a clockwise order or if they are colinear</summary> public static bool IsClockwiseOrColinear (Int2 a, Int2 b, Int2 c) { return RightOrColinear(a, b, c); } /// <summary>Returns if the points are colinear (lie on a straight line)</summary> public static bool IsColinear (Vector3 a, Vector3 b, Vector3 c) { var lhs = b - a; var rhs = c - a; // Take the cross product of lhs and rhs // The magnitude of the cross product will be zero if the points a,b,c are colinear float x = lhs.y * rhs.z - lhs.z * rhs.y; float y = lhs.z * rhs.x - lhs.x * rhs.z; float z = lhs.x * rhs.y - lhs.y * rhs.x; float v = x*x + y*y + z*z; // Epsilon not chosen with much thought, just that float.Epsilon was a bit too small. return v <= 0.0001f; } /// <summary>Returns if the points are colinear (lie on a straight line)</summary> public static bool IsColinear (Vector2 a, Vector2 b, Vector2 c) { float v = (b.x-a.x)*(c.y-a.y)-(c.x-a.x)*(b.y-a.y); // Epsilon not chosen with much thought, just that float.Epsilon was a bit too small. return v <= 0.0001f && v >= -0.0001f; } /// <summary>Returns if the points are colinear (lie on a straight line)</summary> public static bool IsColinearXZ (Int3 a, Int3 b, Int3 c) { return (long)(b.x - a.x) * (long)(c.z - a.z) - (long)(c.x - a.x) * (long)(b.z - a.z) == 0; } /// <summary>Returns if the points are colinear (lie on a straight line)</summary> public static bool IsColinearXZ (Vector3 a, Vector3 b, Vector3 c) { float v = (b.x-a.x)*(c.z-a.z)-(c.x-a.x)*(b.z-a.z); // Epsilon not chosen with much thought, just that float.Epsilon was a bit too small. return v <= 0.0000001f && v >= -0.0000001f; } /// <summary>Returns if the points are colinear (lie on a straight line)</summary> public static bool IsColinearAlmostXZ (Int3 a, Int3 b, Int3 c) { long v = (long)(b.x - a.x) * (long)(c.z - a.z) - (long)(c.x - a.x) * (long)(b.z - a.z); return v > -1 && v < 1; } /// <summary> /// Returns if the line segment start2 - end2 intersects the line segment start1 - end1. /// If only the endpoints coincide, the result is undefined (may be true or false). /// </summary> public static bool SegmentsIntersect (Int2 start1, Int2 end1, Int2 start2, Int2 end2) { return RightOrColinear(start1, end1, start2) != RightOrColinear(start1, end1, end2) && RightOrColinear(start2, end2, start1) != RightOrColinear(start2, end2, end1); } /// <summary> /// Returns if the line segment start2 - end2 intersects the line segment start1 - end1. /// If only the endpoints coincide, the result is undefined (may be true or false). /// /// Note: XZ space /// </summary> public static bool SegmentsIntersectXZ (Int3 start1, Int3 end1, Int3 start2, Int3 end2) { return RightOrColinearXZ(start1, end1, start2) != RightOrColinearXZ(start1, end1, end2) && RightOrColinearXZ(start2, end2, start1) != RightOrColinearXZ(start2, end2, end1); } /// <summary> /// Returns if the two line segments intersects. The lines are NOT treated as infinite (just for clarification) /// See: IntersectionPoint /// </summary> public static bool SegmentsIntersectXZ (Vector3 start1, Vector3 end1, Vector3 start2, Vector3 end2) { Vector3 dir1 = end1-start1; Vector3 dir2 = end2-start2; float den = dir2.z*dir1.x - dir2.x * dir1.z; if (den == 0) { return false; } float nom = dir2.x*(start1.z-start2.z)- dir2.z*(start1.x-start2.x); float nom2 = dir1.x*(start1.z-start2.z) - dir1.z * (start1.x - start2.x); float u = nom/den; float u2 = nom2/den; if (u < 0F || u > 1F || u2 < 0F || u2 > 1F) { return false; } return true; } /// <summary> /// Calculates the point start1 + dir1*t where the two infinite lines intersect. /// Returns false if the lines are close to parallel. /// </summary> public static bool LineLineIntersectionFactor (Vector2 start1, Vector2 dir1, Vector2 start2, Vector2 dir2, out float t) { float den = dir2.y*dir1.x - dir2.x * dir1.y; if (Mathf.Abs(den) < 0.0001f) { t = 0; return false; } float nom = dir2.x*(start1.y-start2.y) - dir2.y*(start1.x-start2.x); t = nom/den; return true; } /// <summary> /// Intersection point between two infinite lines. /// Note that start points and directions are taken as parameters instead of start and end points. /// Lines are treated as infinite. If the lines are parallel 'start1' will be returned. /// Intersections are calculated on the XZ plane. /// /// See: LineIntersectionPointXZ /// </summary> public static Vector3 LineDirIntersectionPointXZ (Vector3 start1, Vector3 dir1, Vector3 start2, Vector3 dir2) { float den = dir2.z*dir1.x - dir2.x * dir1.z; if (den == 0) { return start1; } float nom = dir2.x*(start1.z-start2.z)- dir2.z*(start1.x-start2.x); float u = nom/den; return start1 + dir1*u; } /// <summary> /// Intersection point between two infinite lines. /// Note that start points and directions are taken as parameters instead of start and end points. /// Lines are treated as infinite. If the lines are parallel 'start1' will be returned. /// Intersections are calculated on the XZ plane. /// /// See: LineIntersectionPointXZ /// </summary> public static Vector3 LineDirIntersectionPointXZ (Vector3 start1, Vector3 dir1, Vector3 start2, Vector3 dir2, out bool intersects) { float den = dir2.z*dir1.x - dir2.x * dir1.z; if (den == 0) { intersects = false; return start1; } float nom = dir2.x*(start1.z-start2.z)- dir2.z*(start1.x-start2.x); float u = nom/den; intersects = true; return start1 + dir1*u; } /// <summary> /// Returns if the ray (start1, end1) intersects the segment (start2, end2). /// false is returned if the lines are parallel. /// Only the XZ coordinates are used. /// TODO: Double check that this actually works /// </summary> public static bool RaySegmentIntersectXZ (Int3 start1, Int3 end1, Int3 start2, Int3 end2) { Int3 dir1 = end1-start1; Int3 dir2 = end2-start2; long den = dir2.z*dir1.x - dir2.x * dir1.z; if (den == 0) { return false; } long nom = dir2.x*(start1.z-start2.z)- dir2.z*(start1.x-start2.x); long nom2 = dir1.x*(start1.z-start2.z) - dir1.z * (start1.x - start2.x); //factor1 < 0 // If both have the same sign, then nom/den < 0 and thus the segment cuts the ray before the ray starts if (!(nom < 0 ^ den < 0)) { return false; } //factor2 < 0 if (!(nom2 < 0 ^ den < 0)) { return false; } if ((den >= 0 && nom2 > den) || (den < 0 && nom2 <= den)) { return false; } return true; } /// <summary> /// Returns the intersection factors for line 1 and line 2. The intersection factors is a distance along the line start - end where the other line intersects it. /// <code> intersectionPoint = start1 + factor1 * (end1-start1) </code> /// <code> intersectionPoint2 = start2 + factor2 * (end2-start2) </code> /// Lines are treated as infinite. /// false is returned if the lines are parallel and true if they are not. /// Only the XZ coordinates are used. /// </summary> public static bool LineIntersectionFactorXZ (Int3 start1, Int3 end1, Int3 start2, Int3 end2, out float factor1, out float factor2) { Int3 dir1 = end1-start1; Int3 dir2 = end2-start2; long den = dir2.z*dir1.x - dir2.x * dir1.z; if (den == 0) { factor1 = 0; factor2 = 0; return false; } long nom = dir2.x*(start1.z-start2.z)- dir2.z*(start1.x-start2.x); long nom2 = dir1.x*(start1.z-start2.z) - dir1.z * (start1.x - start2.x); factor1 = (float)nom/den; factor2 = (float)nom2/den; return true; } /// <summary> /// Returns the intersection factors for line 1 and line 2. The intersection factors is a distance along the line start - end where the other line intersects it. /// <code> intersectionPoint = start1 + factor1 * (end1-start1) </code> /// <code> intersectionPoint2 = start2 + factor2 * (end2-start2) </code> /// Lines are treated as infinite. /// false is returned if the lines are parallel and true if they are not. /// Only the XZ coordinates are used. /// </summary> public static bool LineIntersectionFactorXZ (Vector3 start1, Vector3 end1, Vector3 start2, Vector3 end2, out float factor1, out float factor2) { Vector3 dir1 = end1-start1; Vector3 dir2 = end2-start2; float den = dir2.z*dir1.x - dir2.x * dir1.z; if (den <= 0.00001f && den >= -0.00001f) { factor1 = 0; factor2 = 0; return false; } float nom = dir2.x*(start1.z-start2.z)- dir2.z*(start1.x-start2.x); float nom2 = dir1.x*(start1.z-start2.z) - dir1.z * (start1.x - start2.x); float u = nom/den; float u2 = nom2/den; factor1 = u; factor2 = u2; return true; } /// <summary> /// Returns the intersection factor for line 1 with ray 2. /// The intersection factors is a factor distance along the line start - end where the other line intersects it. /// <code> intersectionPoint = start1 + factor * (end1-start1) </code> /// Lines are treated as infinite. /// /// The second "line" is treated as a ray, meaning only matches on start2 or forwards towards end2 (and beyond) will be returned /// If the point lies on the wrong side of the ray start, Nan will be returned. /// /// NaN is returned if the lines are parallel. /// </summary> public static float LineRayIntersectionFactorXZ (Int3 start1, Int3 end1, Int3 start2, Int3 end2) { Int3 dir1 = end1-start1; Int3 dir2 = end2-start2; int den = dir2.z*dir1.x - dir2.x * dir1.z; if (den == 0) { return float.NaN; } int nom = dir2.x*(start1.z-start2.z)- dir2.z*(start1.x-start2.x); int nom2 = dir1.x*(start1.z-start2.z) - dir1.z * (start1.x - start2.x); if ((float)nom2/den < 0) { return float.NaN; } return (float)nom/den; } /// <summary> /// Returns the intersection factor for line 1 with line 2. /// The intersection factor is a distance along the line start1 - end1 where the line start2 - end2 intersects it. /// <code> intersectionPoint = start1 + intersectionFactor * (end1-start1) </code>. /// Lines are treated as infinite. /// -1 is returned if the lines are parallel (note that this is a valid return value if they are not parallel too) /// </summary> public static float LineIntersectionFactorXZ (Vector3 start1, Vector3 end1, Vector3 start2, Vector3 end2) { Vector3 dir1 = end1-start1; Vector3 dir2 = end2-start2; float den = dir2.z*dir1.x - dir2.x * dir1.z; if (den == 0) { return -1; } float nom = dir2.x*(start1.z-start2.z)- dir2.z*(start1.x-start2.x); float u = nom/den; return u; } /// <summary>Returns the intersection point between the two lines. Lines are treated as infinite. start1 is returned if the lines are parallel</summary> public static Vector3 LineIntersectionPointXZ (Vector3 start1, Vector3 end1, Vector3 start2, Vector3 end2) { bool s; return LineIntersectionPointXZ(start1, end1, start2, end2, out s); } /// <summary>Returns the intersection point between the two lines. Lines are treated as infinite. start1 is returned if the lines are parallel</summary> public static Vector3 LineIntersectionPointXZ (Vector3 start1, Vector3 end1, Vector3 start2, Vector3 end2, out bool intersects) { Vector3 dir1 = end1-start1; Vector3 dir2 = end2-start2; float den = dir2.z*dir1.x - dir2.x * dir1.z; if (den == 0) { intersects = false; return start1; } float nom = dir2.x*(start1.z-start2.z)- dir2.z*(start1.x-start2.x); float u = nom/den; intersects = true; return start1 + dir1*u; } /// <summary>Returns the intersection point between the two lines. Lines are treated as infinite. start1 is returned if the lines are parallel</summary> public static Vector2 LineIntersectionPoint (Vector2 start1, Vector2 end1, Vector2 start2, Vector2 end2) { bool s; return LineIntersectionPoint(start1, end1, start2, end2, out s); } /// <summary>Returns the intersection point between the two lines. Lines are treated as infinite. start1 is returned if the lines are parallel</summary> public static Vector2 LineIntersectionPoint (Vector2 start1, Vector2 end1, Vector2 start2, Vector2 end2, out bool intersects) { Vector2 dir1 = end1-start1; Vector2 dir2 = end2-start2; float den = dir2.y*dir1.x - dir2.x * dir1.y; if (den == 0) { intersects = false; return start1; } float nom = dir2.x*(start1.y-start2.y)- dir2.y*(start1.x-start2.x); float u = nom/den; intersects = true; return start1 + dir1*u; } /// <summary> /// Returns the intersection point between the two line segments in XZ space. /// Lines are NOT treated as infinite. start1 is returned if the line segments do not intersect /// The point will be returned along the line [start1, end1] (this matters only for the y coordinate). /// </summary> public static Vector3 SegmentIntersectionPointXZ (Vector3 start1, Vector3 end1, Vector3 start2, Vector3 end2, out bool intersects) { Vector3 dir1 = end1-start1; Vector3 dir2 = end2-start2; float den = dir2.z * dir1.x - dir2.x * dir1.z; if (den == 0) { intersects = false; return start1; } float nom = dir2.x*(start1.z-start2.z)- dir2.z*(start1.x-start2.x); float nom2 = dir1.x*(start1.z-start2.z) - dir1.z*(start1.x-start2.x); float u = nom/den; float u2 = nom2/den; if (u < 0F || u > 1F || u2 < 0F || u2 > 1F) { intersects = false; return start1; } intersects = true; return start1 + dir1*u; } /// <summary> /// Does the line segment intersect the bounding box. /// The line is NOT treated as infinite. /// \author Slightly modified code from http://www.3dkingdoms.com/weekly/weekly.php?a=21 /// </summary> public static bool SegmentIntersectsBounds (Bounds bounds, Vector3 a, Vector3 b) { // Put segment in box space a -= bounds.center; b -= bounds.center; // Get line midpoint and extent var LMid = (a + b) * 0.5F; var L = (a - LMid); var LExt = new Vector3(Math.Abs(L.x), Math.Abs(L.y), Math.Abs(L.z)); Vector3 extent = bounds.extents; // Use Separating Axis Test // Separation vector from box center to segment center is LMid, since the line is in box space if (Math.Abs(LMid.x) > extent.x + LExt.x) return false; if (Math.Abs(LMid.y) > extent.y + LExt.y) return false; if (Math.Abs(LMid.z) > extent.z + LExt.z) return false; // Crossproducts of line and each axis if (Math.Abs(LMid.y * L.z - LMid.z * L.y) > (extent.y * LExt.z + extent.z * LExt.y)) return false; if (Math.Abs(LMid.x * L.z - LMid.z * L.x) > (extent.x * LExt.z + extent.z * LExt.x)) return false; if (Math.Abs(LMid.x * L.y - LMid.y * L.x) > (extent.x * LExt.y + extent.y * LExt.x)) return false; // No separating axis, the line intersects return true; } /// <summary> /// Intersection of a line and a circle. /// Returns the greatest t such that segmentStart+t*(segmentEnd-segmentStart) lies on the circle. /// /// In case the line does not intersect with the circle, the closest point on the line /// to the circle will be returned. /// /// Note: Works for line and sphere in 3D space as well. /// /// See: http://mathworld.wolfram.com/Circle-LineIntersection.html /// See: https://en.wikipedia.org/wiki/Intersection_(Euclidean_geometry)<see cref="A_line_and_a_circle"/> /// </summary> public static float LineCircleIntersectionFactor (Vector3 circleCenter, Vector3 linePoint1, Vector3 linePoint2, float radius) { float segmentLength; var normalizedDirection = Normalize(linePoint2 - linePoint1, out segmentLength); var dirToStart = linePoint1 - circleCenter; var dot = Vector3.Dot(dirToStart, normalizedDirection); var discriminant = dot * dot - (dirToStart.sqrMagnitude - radius*radius); if (discriminant < 0) { // No intersection, pick closest point on segment discriminant = 0; } var t = -dot + Mathf.Sqrt(discriminant); // Note: the default value of 1 is important for the PathInterpolator.MoveToCircleIntersection2D // method to work properly. Maybe find some better abstraction where this default value is more obvious. return segmentLength > 0.00001f ? t / segmentLength : 1f; } /// <summary> /// True if the matrix will reverse orientations of faces. /// /// Scaling by a negative value along an odd number of axes will reverse /// the orientation of e.g faces on a mesh. This must be counter adjusted /// by for example the recast rasterization system to be able to handle /// meshes with negative scales properly. /// /// We can find out if they are flipped by finding out how the signed /// volume of a unit cube is transformed when applying the matrix /// /// If the (signed) volume turns out to be negative /// that also means that the orientation of it has been reversed. /// /// See: https://en.wikipedia.org/wiki/Normal_(geometry) /// See: https://en.wikipedia.org/wiki/Parallelepiped /// </summary> public static bool ReversesFaceOrientations (Matrix4x4 matrix) { var dX = matrix.MultiplyVector(new Vector3(1, 0, 0)); var dY = matrix.MultiplyVector(new Vector3(0, 1, 0)); var dZ = matrix.MultiplyVector(new Vector3(0, 0, 1)); // Calculate the signed volume of the parallelepiped var volume = Vector3.Dot(Vector3.Cross(dX, dY), dZ); return volume < 0; } /// <summary> /// True if the matrix will reverse orientations of faces in the XZ plane. /// Almost the same as ReversesFaceOrientations, but this method assumes /// that scaling a face with a negative scale along the Y axis does not /// reverse the orientation of the face. /// /// This is used for navmesh cuts. /// /// Scaling by a negative value along one axis or rotating /// it so that it is upside down will reverse /// the orientation of the cut, so we need to be reverse /// it again as a countermeasure. /// However if it is flipped along two axes it does not need to /// be reversed. /// We can handle all these cases by finding out how a unit square formed /// by our forward axis and our rightward axis is transformed in XZ space /// when applying the local to world matrix. /// If the (signed) area of the unit square turns out to be negative /// that also means that the orientation of it has been reversed. /// The signed area is calculated using a cross product of the vectors. /// </summary> public static bool ReversesFaceOrientationsXZ (Matrix4x4 matrix) { var dX = matrix.MultiplyVector(new Vector3(1, 0, 0)); var dZ = matrix.MultiplyVector(new Vector3(0, 0, 1)); // Take the cross product of the vectors projected onto the XZ plane var cross = (dX.x*dZ.z - dZ.x*dX.z); return cross < 0; } /// <summary> /// Normalize vector and also return the magnitude. /// This is more efficient than calculating the magnitude and normalizing separately /// </summary> public static Vector3 Normalize (Vector3 v, out float magnitude) { magnitude = v.magnitude; // This is the same constant that Unity uses if (magnitude > 1E-05f) { return v / magnitude; } else { return Vector3.zero; } } /// <summary> /// Normalize vector and also return the magnitude. /// This is more efficient than calculating the magnitude and normalizing separately /// </summary> public static Vector2 Normalize (Vector2 v, out float magnitude) { magnitude = v.magnitude; // This is the same constant that Unity uses if (magnitude > 1E-05f) { return v / magnitude; } else { return Vector2.zero; } } /* Clamp magnitude along the X and Z axes. * The y component will not be changed. */ public static Vector3 ClampMagnitudeXZ (Vector3 v, float maxMagnitude) { float squaredMagnitudeXZ = v.x*v.x + v.z*v.z; if (squaredMagnitudeXZ > maxMagnitude*maxMagnitude && maxMagnitude > 0) { var factor = maxMagnitude / Mathf.Sqrt(squaredMagnitudeXZ); v.x *= factor; v.z *= factor; } return v; } /* Magnitude in the XZ plane */ public static float MagnitudeXZ (Vector3 v) { return Mathf.Sqrt(v.x*v.x + v.z*v.z); } } /// <summary> /// Utility functions for working with numbers and strings. /// /// See: Polygon /// See: VectorMath /// </summary> public static class AstarMath { /// <summary>Maps a value between startMin and startMax to be between targetMin and targetMax</summary> public static float MapTo (float startMin, float startMax, float targetMin, float targetMax, float value) { return Mathf.Lerp(targetMin, targetMax, Mathf.InverseLerp(startMin, startMax, value)); } /// <summary>Returns a nicely formatted string for the number of bytes (KiB, MiB, GiB etc). Uses decimal names (KB, Mb - 1000) but calculates using binary values (KiB, MiB - 1024)</summary> public static string FormatBytesBinary (int bytes) { double sign = bytes >= 0 ? 1D : -1D; bytes = Mathf.Abs(bytes); if (bytes < 1024) { return (bytes*sign)+" bytes"; } else if (bytes < 1024*1024) { return ((bytes/1024D)*sign).ToString("0.0") + " KiB"; } else if (bytes < 1024*1024*1024) { return ((bytes/(1024D*1024D))*sign).ToString("0.0") +" MiB"; } return ((bytes/(1024D*1024D*1024D))*sign).ToString("0.0") +" GiB"; } /// <summary> /// Returns bit number b from int a. The bit number is zero based. Relevant b values are from 0 to 31. /// Equals to (a >> b) & 1 /// </summary> static int Bit (int a, int b) { return (a >> b) & 1; } /// <summary> /// Returns a nice color from int i with alpha a. Got code from the open-source Recast project, works really well. /// Seems like there are only 64 possible colors from studying the code /// </summary> public static Color IntToColor (int i, float a) { int r = Bit(i, 2) + Bit(i, 3) * 2 + 1; int g = Bit(i, 1) + Bit(i, 4) * 2 + 1; int b = Bit(i, 0) + Bit(i, 5) * 2 + 1; return new Color(r*0.25F, g*0.25F, b*0.25F, a); } /// <summary> /// Converts an HSV color to an RGB color. /// According to the algorithm described at http://en.wikipedia.org/wiki/HSL_and_HSV /// /// @author Wikipedia /// @return the RGB representation of the color. /// </summary> public static Color HSVToRGB (float h, float s, float v) { float r = 0, g = 0, b = 0; float Chroma = s * v; float Hdash = h / 60.0f; float X = Chroma * (1.0f - System.Math.Abs((Hdash % 2.0f) - 1.0f)); if (Hdash < 1.0f) { r = Chroma; g = X; } else if (Hdash < 2.0f) { r = X; g = Chroma; } else if (Hdash < 3.0f) { g = Chroma; b = X; } else if (Hdash < 4.0f) { g = X; b = Chroma; } else if (Hdash < 5.0f) { r = X; b = Chroma; } else if (Hdash < 6.0f) { r = Chroma; b = X; } float Min = v - Chroma; r += Min; g += Min; b += Min; return new Color(r, g, b); } } /// <summary> /// Utility functions for working with polygons, lines, and other vector math. /// All functions which accepts Vector3s but work in 2D space uses the XZ space if nothing else is said. /// /// Version: A lot of functions in this class have been moved to the VectorMath class /// the names have changed slightly and everything now consistently assumes a left handed /// coordinate system now instead of sometimes using a left handed one and sometimes /// using a right handed one. This is why the 'Left' methods redirect to methods /// named 'Right'. The functionality is exactly the same. /// </summary> public static class Polygon { /// <summary> /// Returns if the triangle ABC contains the point p in XZ space. /// The triangle vertices are assumed to be laid out in clockwise order. /// </summary> public static bool ContainsPointXZ (Vector3 a, Vector3 b, Vector3 c, Vector3 p) { return VectorMath.IsClockwiseMarginXZ(a, b, p) && VectorMath.IsClockwiseMarginXZ(b, c, p) && VectorMath.IsClockwiseMarginXZ(c, a, p); } /// <summary> /// Returns if the triangle ABC contains the point p. /// The triangle vertices are assumed to be laid out in clockwise order. /// </summary> public static bool ContainsPointXZ (Int3 a, Int3 b, Int3 c, Int3 p) { return VectorMath.IsClockwiseOrColinearXZ(a, b, p) && VectorMath.IsClockwiseOrColinearXZ(b, c, p) && VectorMath.IsClockwiseOrColinearXZ(c, a, p); } /// <summary> /// Returns if the triangle ABC contains the point p. /// The triangle vertices are assumed to be laid out in clockwise order. /// </summary> public static bool ContainsPoint (Int2 a, Int2 b, Int2 c, Int2 p) { return VectorMath.IsClockwiseOrColinear(a, b, p) && VectorMath.IsClockwiseOrColinear(b, c, p) && VectorMath.IsClockwiseOrColinear(c, a, p); } /// <summary> /// Checks if p is inside the polygon. /// \author http://unifycommunity.com/wiki/index.php?title=PolyContainsPoint (Eric5h5) /// </summary> public static bool ContainsPoint (Vector2[] polyPoints, Vector2 p) { int j = polyPoints.Length-1; bool inside = false; for (int i = 0; i < polyPoints.Length; j = i++) { if (((polyPoints[i].y <= p.y && p.y < polyPoints[j].y) || (polyPoints[j].y <= p.y && p.y < polyPoints[i].y)) && (p.x < (polyPoints[j].x - polyPoints[i].x) * (p.y - polyPoints[i].y) / (polyPoints[j].y - polyPoints[i].y) + polyPoints[i].x)) inside = !inside; } return inside; } /// <summary> /// Checks if p is inside the polygon (XZ space). /// \author http://unifycommunity.com/wiki/index.php?title=PolyContainsPoint (Eric5h5) /// </summary> public static bool ContainsPointXZ (Vector3[] polyPoints, Vector3 p) { int j = polyPoints.Length-1; bool inside = false; for (int i = 0; i < polyPoints.Length; j = i++) { if (((polyPoints[i].z <= p.z && p.z < polyPoints[j].z) || (polyPoints[j].z <= p.z && p.z < polyPoints[i].z)) && (p.x < (polyPoints[j].x - polyPoints[i].x) * (p.z - polyPoints[i].z) / (polyPoints[j].z - polyPoints[i].z) + polyPoints[i].x)) inside = !inside; } return inside; } /// <summary> /// Sample Y coordinate of the triangle (p1, p2, p3) at the point p in XZ space. /// The y coordinate of p is ignored. /// /// Returns: The interpolated y coordinate unless the triangle is degenerate in which case a DivisionByZeroException will be thrown /// /// See: https://en.wikipedia.org/wiki/Barycentric_coordinate_system /// </summary> public static int SampleYCoordinateInTriangle (Int3 p1, Int3 p2, Int3 p3, Int3 p) { double det = ((double)(p2.z - p3.z)) * (p1.x - p3.x) + ((double)(p3.x - p2.x)) * (p1.z - p3.z); double lambda1 = ((((double)(p2.z - p3.z)) * (p.x - p3.x) + ((double)(p3.x - p2.x)) * (p.z - p3.z)) / det); double lambda2 = ((((double)(p3.z - p1.z)) * (p.x - p3.x) + ((double)(p1.x - p3.x)) * (p.z - p3.z)) / det); return (int)Math.Round(lambda1 * p1.y + lambda2 * p2.y + (1 - lambda1 - lambda2) * p3.y); } /// <summary> /// Calculates convex hull in XZ space for the points. /// Implemented using the very simple Gift Wrapping Algorithm /// which has a complexity of O(nh) where n is the number of points and h is the number of points on the hull, /// so it is in the worst case quadratic. /// </summary> public static Vector3[] ConvexHullXZ (Vector3[] points) { if (points.Length == 0) return new Vector3[0]; var hull = Pathfinding.Util.ListPool<Vector3>.Claim(); int pointOnHull = 0; for (int i = 1; i < points.Length; i++) if (points[i].x < points[pointOnHull].x) pointOnHull = i; int startpoint = pointOnHull; int counter = 0; do { hull.Add(points[pointOnHull]); int endpoint = 0; for (int i = 0; i < points.Length; i++) if (endpoint == pointOnHull || !VectorMath.RightOrColinearXZ(points[pointOnHull], points[endpoint], points[i])) endpoint = i; pointOnHull = endpoint; counter++; if (counter > 10000) { Debug.LogWarning("Infinite Loop in Convex Hull Calculation"); break; } } while (pointOnHull != startpoint); var result = hull.ToArray(); // Return to pool Pathfinding.Util.ListPool<Vector3>.Release(hull); return result; } /// <summary> /// Closest point on the triangle abc to the point p. /// See: 'Real Time Collision Detection' by Christer Ericson, chapter 5.1, page 141 /// </summary> public static Vector2 ClosestPointOnTriangle (Vector2 a, Vector2 b, Vector2 c, Vector2 p) { // Check if p is in vertex region outside A var ab = b - a; var ac = c - a; var ap = p - a; var d1 = Vector2.Dot(ab, ap); var d2 = Vector2.Dot(ac, ap); // Barycentric coordinates (1,0,0) if (d1 <= 0 && d2 <= 0) { return a; } // Check if p is in vertex region outside B var bp = p - b; var d3 = Vector2.Dot(ab, bp); var d4 = Vector2.Dot(ac, bp); // Barycentric coordinates (0,1,0) if (d3 >= 0 && d4 <= d3) { return b; } // Check if p is in edge region outside AB, if so return a projection of p onto AB if (d1 >= 0 && d3 <= 0) { var vc = d1 * d4 - d3 * d2; if (vc <= 0) { // Barycentric coordinates (1-v, v, 0) var v = d1 / (d1 - d3); return a + ab*v; } } // Check if p is in vertex region outside C var cp = p - c; var d5 = Vector2.Dot(ab, cp); var d6 = Vector2.Dot(ac, cp); // Barycentric coordinates (0,0,1) if (d6 >= 0 && d5 <= d6) { return c; } // Check if p is in edge region of AC, if so return a projection of p onto AC if (d2 >= 0 && d6 <= 0) { var vb = d5 * d2 - d1 * d6; if (vb <= 0) { // Barycentric coordinates (1-v, 0, v) var v = d2 / (d2 - d6); return a + ac*v; } } // Check if p is in edge region of BC, if so return projection of p onto BC if ((d4 - d3) >= 0 && (d5 - d6) >= 0) { var va = d3 * d6 - d5 * d4; if (va <= 0) { var v = (d4 - d3) / ((d4 - d3) + (d5 - d6)); return b + (c - b) * v; } } return p; } /// <summary> /// Closest point on the triangle abc to the point p when seen from above. /// See: 'Real Time Collision Detection' by Christer Ericson, chapter 5.1, page 141 /// </summary> public static Vector3 ClosestPointOnTriangleXZ (Vector3 a, Vector3 b, Vector3 c, Vector3 p) { // Check if p is in vertex region outside A var ab = new Vector2(b.x - a.x, b.z - a.z); var ac = new Vector2(c.x - a.x, c.z - a.z); var ap = new Vector2(p.x - a.x, p.z - a.z); var d1 = Vector2.Dot(ab, ap); var d2 = Vector2.Dot(ac, ap); // Barycentric coordinates (1,0,0) if (d1 <= 0 && d2 <= 0) { return a; } // Check if p is in vertex region outside B var bp = new Vector2(p.x - b.x, p.z - b.z); var d3 = Vector2.Dot(ab, bp); var d4 = Vector2.Dot(ac, bp); // Barycentric coordinates (0,1,0) if (d3 >= 0 && d4 <= d3) { return b; } // Check if p is in edge region outside AB, if so return a projection of p onto AB var vc = d1 * d4 - d3 * d2; if (d1 >= 0 && d3 <= 0 && vc <= 0) { // Barycentric coordinates (1-v, v, 0) var v = d1 / (d1 - d3); return (1-v)*a + v*b; } // Check if p is in vertex region outside C var cp = new Vector2(p.x - c.x, p.z - c.z); var d5 = Vector2.Dot(ab, cp); var d6 = Vector2.Dot(ac, cp); // Barycentric coordinates (0,0,1) if (d6 >= 0 && d5 <= d6) { return c; } // Check if p is in edge region of AC, if so return a projection of p onto AC var vb = d5 * d2 - d1 * d6; if (d2 >= 0 && d6 <= 0 && vb <= 0) { // Barycentric coordinates (1-v, 0, v) var v = d2 / (d2 - d6); return (1-v)*a + v*c; } // Check if p is in edge region of BC, if so return projection of p onto BC var va = d3 * d6 - d5 * d4; if ((d4 - d3) >= 0 && (d5 - d6) >= 0 && va <= 0) { var v = (d4 - d3) / ((d4 - d3) + (d5 - d6)); return b + (c - b) * v; } else { // P is inside the face region. Compute the point using its barycentric coordinates (u, v, w) // Note that the x and z coordinates will be exactly the same as P's x and z coordinates var denom = 1f / (va + vb + vc); var v = vb * denom; var w = vc * denom; return new Vector3(p.x, (1 - v - w)*a.y + v*b.y + w*c.y, p.z); } } /// <summary> /// Closest point on the triangle abc to the point p. /// See: 'Real Time Collision Detection' by Christer Ericson, chapter 5.1, page 141 /// </summary> public static Vector3 ClosestPointOnTriangle (Vector3 a, Vector3 b, Vector3 c, Vector3 p) { // Check if p is in vertex region outside A var ab = b - a; var ac = c - a; var ap = p - a; var d1 = Vector3.Dot(ab, ap); var d2 = Vector3.Dot(ac, ap); // Barycentric coordinates (1,0,0) if (d1 <= 0 && d2 <= 0) return a; // Check if p is in vertex region outside B var bp = p - b; var d3 = Vector3.Dot(ab, bp); var d4 = Vector3.Dot(ac, bp); // Barycentric coordinates (0,1,0) if (d3 >= 0 && d4 <= d3) return b; // Check if p is in edge region outside AB, if so return a projection of p onto AB var vc = d1 * d4 - d3 * d2; if (d1 >= 0 && d3 <= 0 && vc <= 0) { // Barycentric coordinates (1-v, v, 0) var v = d1 / (d1 - d3); return a + ab * v; } // Check if p is in vertex region outside C var cp = p - c; var d5 = Vector3.Dot(ab, cp); var d6 = Vector3.Dot(ac, cp); // Barycentric coordinates (0,0,1) if (d6 >= 0 && d5 <= d6) return c; // Check if p is in edge region of AC, if so return a projection of p onto AC var vb = d5 * d2 - d1 * d6; if (d2 >= 0 && d6 <= 0 && vb <= 0) { // Barycentric coordinates (1-v, 0, v) var v = d2 / (d2 - d6); return a + ac * v; } // Check if p is in edge region of BC, if so return projection of p onto BC var va = d3 * d6 - d5 * d4; if ((d4 - d3) >= 0 && (d5 - d6) >= 0 && va <= 0) { var v = (d4 - d3) / ((d4 - d3) + (d5 - d6)); return b + (c - b) * v; } else { // P is inside the face region. Compute the point using its barycentric coordinates (u, v, w) var denom = 1f / (va + vb + vc); var v = vb * denom; var w = vc * denom; // This is equal to: u*a + v*b + w*c, u = va*denom = 1 - v - w; return a + ab * v + ac * w; } } /// <summary>Cached dictionary to avoid excessive allocations</summary> static readonly Dictionary<Int3, int> cached_Int3_int_dict = new Dictionary<Int3, int>(); /// <summary> /// Compress the mesh by removing duplicate vertices. /// /// Vertices that differ by only 1 along the y coordinate will also be merged together. /// Warning: This function is not threadsafe. It uses some cached structures to reduce allocations. /// </summary> /// <param name="vertices">Vertices of the input mesh</param> /// <param name="triangles">Triangles of the input mesh</param> /// <param name="outVertices">Vertices of the output mesh.</param> /// <param name="outTriangles">Triangles of the output mesh.</param> public static void CompressMesh (List<Int3> vertices, List<int> triangles, out Int3[] outVertices, out int[] outTriangles) { Dictionary<Int3, int> firstVerts = cached_Int3_int_dict; firstVerts.Clear(); // Use cached array to reduce memory allocations int[] compressedPointers = ArrayPool<int>.Claim(vertices.Count); // Map positions to the first index they were encountered at int count = 0; for (int i = 0; i < vertices.Count; i++) { // Check if the vertex position has already been added // Also check one position up and one down because rounding errors can cause vertices // that should end up in the same position to be offset 1 unit from each other // TODO: Check along X and Z axes as well? int ind; if (!firstVerts.TryGetValue(vertices[i], out ind) && !firstVerts.TryGetValue(vertices[i] + new Int3(0, 1, 0), out ind) && !firstVerts.TryGetValue(vertices[i] + new Int3(0, -1, 0), out ind)) { firstVerts.Add(vertices[i], count); compressedPointers[i] = count; vertices[count] = vertices[i]; count++; } else { compressedPointers[i] = ind; } } // Create the triangle array or reuse the existing buffer outTriangles = new int[triangles.Count]; // Remap the triangles to the new compressed indices for (int i = 0; i < outTriangles.Length; i++) { outTriangles[i] = compressedPointers[triangles[i]]; } // Create the vertex array or reuse the existing buffer outVertices = new Int3[count]; for (int i = 0; i < count; i++) outVertices[i] = vertices[i]; ArrayPool<int>.Release(ref compressedPointers); } /// <summary> /// Given a set of edges between vertices, follows those edges and returns them as chains and cycles. /// /// [Open online documentation to see images] /// </summary> /// <param name="outline">outline[a] = b if there is an edge from a to b.</param> /// <param name="hasInEdge">hasInEdge should contain b if outline[a] = b for any key a.</param> /// <param name="results">Will be called once for each contour with the contour as a parameter as well as a boolean indicating if the contour is a cycle or a chain (see image).</param> public static void TraceContours (Dictionary<int, int> outline, HashSet<int> hasInEdge, System.Action<List<int>, bool> results) { // Iterate through chains of the navmesh outline. // I.e segments of the outline that are not loops // we need to start these at the beginning of the chain. // Then iterate over all the loops of the outline. // Since they are loops, we can start at any point. var obstacleVertices = ListPool<int>.Claim(); var outlineKeys = ListPool<int>.Claim(); outlineKeys.AddRange(outline.Keys); for (int k = 0; k <= 1; k++) { bool cycles = k == 1; for (int i = 0; i < outlineKeys.Count; i++) { var startIndex = outlineKeys[i]; // Chains (not cycles) need to start at the start of the chain // Cycles can start at any point if (!cycles && hasInEdge.Contains(startIndex)) { continue; } var index = startIndex; obstacleVertices.Clear(); obstacleVertices.Add(index); while (outline.ContainsKey(index)) { var next = outline[index]; outline.Remove(index); obstacleVertices.Add(next); // We traversed a full cycle if (next == startIndex) break; index = next; } if (obstacleVertices.Count > 1) { results(obstacleVertices, cycles); } } } ListPool<int>.Release(ref outlineKeys); ListPool<int>.Release(ref obstacleVertices); } /// <summary>Divides each segment in the list into subSegments segments and fills the result list with the new points</summary> public static void Subdivide (List<Vector3> points, List<Vector3> result, int subSegments) { for (int i = 0; i < points.Count-1; i++) for (int j = 0; j < subSegments; j++) result.Add(Vector3.Lerp(points[i], points[i+1], j / (float)subSegments)); result.Add(points[points.Count-1]); } } }