123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545 |
- using Pathfinding.Util;
- using System.Collections.Generic;
- using UnityEngine;
- namespace Pathfinding {
- /// <summary>
- /// Contains useful functions for working with paths and nodes.
- /// This class works a lot with the <see cref="Pathfinding.GraphNode"/> class, a useful function to get nodes is AstarPath.GetNearest.
- /// See: <see cref="AstarPath.GetNearest"/>
- /// See: <see cref="Pathfinding.GraphUpdateUtilities"/>
- /// See: <see cref="Pathfinding.GraphUtilities"/>
- /// </summary>
- public static class PathUtilities {
- /// <summary>
- /// Returns if there is a walkable path from node1 to node2.
- /// This method is extremely fast because it only uses precalculated information.
- ///
- /// <code>
- /// GraphNode node1 = AstarPath.active.GetNearest(point1, NNConstraint.Default).node;
- /// GraphNode node2 = AstarPath.active.GetNearest(point2, NNConstraint.Default).node;
- ///
- /// if (PathUtilities.IsPathPossible(node1, node2)) {
- /// // Yay, there is a path between those two nodes
- /// }
- /// </code>
- ///
- /// Equivalent to calling <see cref="IsPathPossible(List<GraphNode>)"/> with a list containing node1 and node2.
- ///
- /// See: graph-updates (view in online documentation for working links)
- /// See: <see cref="AstarPath.GetNearest"/>
- /// </summary>
- public static bool IsPathPossible (GraphNode node1, GraphNode node2) {
- return node1.Walkable && node2.Walkable && node1.Area == node2.Area;
- }
- /// <summary>
- /// Returns if there are walkable paths between all nodes.
- ///
- /// See: graph-updates (view in online documentation for working links)
- ///
- /// Returns true for empty lists.
- ///
- /// See: <see cref="AstarPath.GetNearest"/>
- /// </summary>
- public static bool IsPathPossible (List<GraphNode> nodes) {
- if (nodes.Count == 0) return true;
- uint area = nodes[0].Area;
- for (int i = 0; i < nodes.Count; i++) if (!nodes[i].Walkable || nodes[i].Area != area) return false;
- return true;
- }
- /// <summary>
- /// Returns if there are walkable paths between all nodes.
- /// See: graph-updates (view in online documentation for working links)
- ///
- /// This method will actually only check if the first node can reach all other nodes. However this is
- /// equivalent in 99% of the cases since almost always the graph connections are bidirectional.
- /// If you are not aware of any cases where you explicitly create unidirectional connections
- /// this method can be used without worries.
- ///
- /// Returns true for empty lists
- ///
- /// Warning: This method is significantly slower than the IsPathPossible method which does not take a tagMask
- ///
- /// See: <see cref="AstarPath.GetNearest"/>
- /// </summary>
- public static bool IsPathPossible (List<GraphNode> nodes, int tagMask) {
- if (nodes.Count == 0) return true;
- // Make sure that the first node has a valid tag
- if (((tagMask >> (int)nodes[0].Tag) & 1) == 0) return false;
- // Fast check first
- if (!IsPathPossible(nodes)) return false;
- // Make sure that the first node can reach all other nodes
- var reachable = GetReachableNodes(nodes[0], tagMask);
- bool result = true;
- // Make sure that the first node can reach all other nodes
- for (int i = 1; i < nodes.Count; i++) {
- if (!reachable.Contains(nodes[i])) {
- result = false;
- break;
- }
- }
- // Pool the temporary list
- ListPool<GraphNode>.Release(ref reachable);
- return result;
- }
- /// <summary>
- /// Returns all nodes reachable from the seed node.
- /// This function performs a DFS (depth-first-search) or flood fill of the graph and returns all nodes which can be reached from
- /// the seed node. In almost all cases this will be identical to returning all nodes which have the same area as the seed node.
- /// In the editor areas are displayed as different colors of the nodes.
- /// The only case where it will not be so is when there is a one way path from some part of the area to the seed node
- /// but no path from the seed node to that part of the graph.
- ///
- /// The returned list is not sorted in any particular way.
- ///
- /// Depending on the number of reachable nodes, this function can take quite some time to calculate
- /// so don't use it too often or it might affect the framerate of your game.
- ///
- /// See: bitmasks (view in online documentation for working links).
- ///
- /// Returns: A List<Node> containing all nodes reachable from the seed node.
- /// For better memory management the returned list should be pooled, see Pathfinding.Util.ListPool.
- /// </summary>
- /// <param name="seed">The node to start the search from.</param>
- /// <param name="tagMask">Optional mask for tags. This is a bitmask.</param>
- /// <param name="filter">Optional filter for which nodes to search. You can combine this with tagMask = -1 to make the filter determine everything.
- /// Only walkable nodes are searched regardless of the filter. If the filter function returns false the node will be treated as unwalkable.</param>
- public static List<GraphNode> GetReachableNodes (GraphNode seed, int tagMask = -1, System.Func<GraphNode, bool> filter = null) {
- Stack<GraphNode> dfsStack = StackPool<GraphNode>.Claim();
- List<GraphNode> reachable = ListPool<GraphNode>.Claim();
- /// <summary>TODO: Pool</summary>
- var map = new HashSet<GraphNode>();
- System.Action<GraphNode> callback;
- // Check if we can use the fast path
- if (tagMask == -1 && filter == null) {
- callback = (GraphNode node) => {
- if (node.Walkable && map.Add(node)) {
- reachable.Add(node);
- dfsStack.Push(node);
- }
- };
- } else {
- callback = (GraphNode node) => {
- if (node.Walkable && ((tagMask >> (int)node.Tag) & 0x1) != 0 && map.Add(node)) {
- if (filter != null && !filter(node)) return;
- reachable.Add(node);
- dfsStack.Push(node);
- }
- };
- }
- callback(seed);
- while (dfsStack.Count > 0) {
- dfsStack.Pop().GetConnections(callback);
- }
- StackPool<GraphNode>.Release(dfsStack);
- return reachable;
- }
- static Queue<GraphNode> BFSQueue;
- static Dictionary<GraphNode, int> BFSMap;
- /// <summary>
- /// Returns all nodes up to a given node-distance from the seed node.
- /// This function performs a BFS (<a href="https://en.wikipedia.org/wiki/Breadth-first_search">breadth-first search</a>) or flood fill of the graph and returns all nodes within a specified node distance which can be reached from
- /// the seed node. In almost all cases when depth is large enough this will be identical to returning all nodes which have the same area as the seed node.
- /// In the editor areas are displayed as different colors of the nodes.
- /// The only case where it will not be so is when there is a one way path from some part of the area to the seed node
- /// but no path from the seed node to that part of the graph.
- ///
- /// The returned list is sorted by node distance from the seed node
- /// i.e distance is measured in the number of nodes the shortest path from seed to that node would pass through.
- /// Note that the distance measurement does not take heuristics, penalties or tag penalties.
- ///
- /// Depending on the number of nodes, this function can take quite some time to calculate
- /// so don't use it too often or it might affect the framerate of your game.
- ///
- /// Returns: A List<GraphNode> containing all nodes reachable up to a specified node distance from the seed node.
- /// For better memory management the returned list should be pooled, see Pathfinding.Util.ListPool
- ///
- /// Warning: This method is not thread safe. Only use it from the Unity thread (i.e normal game code).
- ///
- /// The video below shows the BFS result with varying values of depth. Points are sampled on the nodes using <see cref="GetPointsOnNodes"/>.
- /// [Open online documentation to see videos]
- ///
- /// <code>
- /// var seed = AstarPath.active.GetNearest(transform.position, NNConstraint.Default).node;
- /// var nodes = PathUtilities.BFS(seed, 10);
- /// foreach (var node in nodes) {
- /// Debug.DrawRay((Vector3)node.position, Vector3.up, Color.red, 10);
- /// }
- /// </code>
- /// </summary>
- /// <param name="seed">The node to start the search from.</param>
- /// <param name="depth">The maximum node-distance from the seed node.</param>
- /// <param name="tagMask">Optional mask for tags. This is a bitmask.</param>
- /// <param name="filter">Optional filter for which nodes to search. You can combine this with depth = int.MaxValue and tagMask = -1 to make the filter determine everything.
- /// Only walkable nodes are searched regardless of the filter. If the filter function returns false the node will be treated as unwalkable.</param>
- public static List<GraphNode> BFS (GraphNode seed, int depth, int tagMask = -1, System.Func<GraphNode, bool> filter = null) {
- #if ASTAR_PROFILE
- System.Diagnostics.Stopwatch watch = new System.Diagnostics.Stopwatch();
- watch.Start();
- #endif
- BFSQueue = BFSQueue ?? new Queue<GraphNode>();
- var que = BFSQueue;
- BFSMap = BFSMap ?? new Dictionary<GraphNode, int>();
- var map = BFSMap;
- // Even though we clear at the end of this function, it is good to
- // do it here as well in case the previous invocation of the method
- // threw an exception for some reason
- // and didn't clear the que and map
- que.Clear();
- map.Clear();
- List<GraphNode> result = ListPool<GraphNode>.Claim();
- int currentDist = -1;
- System.Action<GraphNode> callback;
- if (tagMask == -1) {
- callback = node => {
- if (node.Walkable && !map.ContainsKey(node)) {
- if (filter != null && !filter(node)) return;
- map.Add(node, currentDist+1);
- result.Add(node);
- que.Enqueue(node);
- }
- };
- } else {
- callback = node => {
- if (node.Walkable && ((tagMask >> (int)node.Tag) & 0x1) != 0 && !map.ContainsKey(node)) {
- if (filter != null && !filter(node)) return;
- map.Add(node, currentDist+1);
- result.Add(node);
- que.Enqueue(node);
- }
- };
- }
- callback(seed);
- while (que.Count > 0) {
- GraphNode n = que.Dequeue();
- currentDist = map[n];
- if (currentDist >= depth) break;
- n.GetConnections(callback);
- }
- que.Clear();
- map.Clear();
- #if ASTAR_PROFILE
- watch.Stop();
- Debug.Log((1000*watch.Elapsed.TotalSeconds).ToString("0.0 ms"));
- #endif
- return result;
- }
- /// <summary>
- /// Returns points in a spiral centered around the origin with a minimum clearance from other points.
- /// The points are laid out on the involute of a circle
- /// See: http://en.wikipedia.org/wiki/Involute
- /// Which has some nice properties.
- /// All points are separated by clearance world units.
- /// This method is O(n), yes if you read the code you will see a binary search, but that binary search
- /// has an upper bound on the number of steps, so it does not yield a log factor.
- ///
- /// Note: Consider recycling the list after usage to reduce allocations.
- /// See: Pathfinding.Util.ListPool
- /// </summary>
- public static List<Vector3> GetSpiralPoints (int count, float clearance) {
- List<Vector3> pts = ListPool<Vector3>.Claim(count);
- // The radius of the smaller circle used for generating the involute of a circle
- // Calculated from the separation distance between the turns
- float a = clearance/(2*Mathf.PI);
- float t = 0;
- pts.Add(InvoluteOfCircle(a, t));
- for (int i = 0; i < count; i++) {
- Vector3 prev = pts[pts.Count-1];
- // d = -t0/2 + sqrt( t0^2/4 + 2d/a )
- // Minimum angle (radians) which would create an arc distance greater than clearance
- float d = -t/2 + Mathf.Sqrt(t*t/4 + 2*clearance/a);
- // Binary search for separating this point and the previous one
- float mn = t + d;
- float mx = t + 2*d;
- while (mx - mn > 0.01f) {
- float mid = (mn + mx)/2;
- Vector3 p = InvoluteOfCircle(a, mid);
- if ((p - prev).sqrMagnitude < clearance*clearance) {
- mn = mid;
- } else {
- mx = mid;
- }
- }
- pts.Add(InvoluteOfCircle(a, mx));
- t = mx;
- }
- return pts;
- }
- /// <summary>
- /// Returns the XZ coordinate of the involute of circle.
- /// See: http://en.wikipedia.org/wiki/Involute
- /// </summary>
- private static Vector3 InvoluteOfCircle (float a, float t) {
- return new Vector3(a*(Mathf.Cos(t) + t*Mathf.Sin(t)), 0, a*(Mathf.Sin(t) - t*Mathf.Cos(t)));
- }
- /// <summary>
- /// Will calculate a number of points around p which are on the graph and are separated by clearance from each other.
- /// This is like GetPointsAroundPoint except that previousPoints are treated as being in world space.
- /// The average of the points will be found and then that will be treated as the group center.
- /// </summary>
- /// <param name="p">The point to generate points around</param>
- /// <param name="g">The graph to use for linecasting. If you are only using one graph, you can get this by AstarPath.active.graphs[0] as IRaycastableGraph.
- /// Note that not all graphs are raycastable, recast, navmesh and grid graphs are raycastable. On recast and navmesh it works the best.</param>
- /// <param name="previousPoints">The points to use for reference. Note that these are in world space.
- /// The new points will overwrite the existing points in the list. The result will be in world space.</param>
- /// <param name="radius">The final points will be at most this distance from p.</param>
- /// <param name="clearanceRadius">The points will if possible be at least this distance from each other.</param>
- public static void GetPointsAroundPointWorld (Vector3 p, IRaycastableGraph g, List<Vector3> previousPoints, float radius, float clearanceRadius) {
- if (previousPoints.Count == 0) return;
- Vector3 avg = Vector3.zero;
- for (int i = 0; i < previousPoints.Count; i++) avg += previousPoints[i];
- avg /= previousPoints.Count;
- for (int i = 0; i < previousPoints.Count; i++) previousPoints[i] -= avg;
- GetPointsAroundPoint(p, g, previousPoints, radius, clearanceRadius);
- }
- /// <summary>
- /// Will calculate a number of points around center which are on the graph and are separated by clearance from each other.
- /// The maximum distance from center to any point will be radius.
- /// Points will first be tried to be laid out as previousPoints and if that fails, random points will be selected.
- /// This is great if you want to pick a number of target points for group movement. If you pass all current agent points from e.g the group's average position
- /// this method will return target points so that the units move very little within the group, this is often aesthetically pleasing and reduces jitter if using
- /// some kind of local avoidance.
- ///
- /// TODO: Write unit tests
- /// </summary>
- /// <param name="center">The point to generate points around</param>
- /// <param name="g">The graph to use for linecasting. If you are only using one graph, you can get this by AstarPath.active.graphs[0] as IRaycastableGraph.
- /// Note that not all graphs are raycastable, recast, navmesh and grid graphs are raycastable. On recast and navmesh it works the best.</param>
- /// <param name="previousPoints">The points to use for reference. Note that these should not be in world space. They are treated as relative to center.
- /// The new points will overwrite the existing points in the list. The result will be in world space, not relative to center.</param>
- /// <param name="radius">The final points will be at most this distance from center.</param>
- /// <param name="clearanceRadius">The points will if possible be at least this distance from each other.</param>
- public static void GetPointsAroundPoint (Vector3 center, IRaycastableGraph g, List<Vector3> previousPoints, float radius, float clearanceRadius) {
- if (g == null) throw new System.ArgumentNullException("g");
- var graph = g as NavGraph;
- if (graph == null) throw new System.ArgumentException("g is not a NavGraph");
- NNInfoInternal nn = graph.GetNearestForce(center, NNConstraint.Default);
- center = nn.clampedPosition;
- if (nn.node == null) {
- // No valid point to start from
- return;
- }
- // Make sure the enclosing circle has a radius which can pack circles with packing density 0.5
- radius = Mathf.Max(radius, 1.4142f*clearanceRadius*Mathf.Sqrt(previousPoints.Count)); //Mathf.Sqrt(previousPoints.Count*clearanceRadius*2));
- clearanceRadius *= clearanceRadius;
- for (int i = 0; i < previousPoints.Count; i++) {
- Vector3 dir = previousPoints[i];
- float magn = dir.magnitude;
- if (magn > 0) dir /= magn;
- float newMagn = radius;//magn > radius ? radius : magn;
- dir *= newMagn;
- GraphHitInfo hit;
- int tests = 0;
- while (true) {
- Vector3 pt = center + dir;
- if (g.Linecast(center, pt, out hit)) {
- if (hit.point == Vector3.zero) {
- // Oops, linecast actually failed completely
- // try again unless we have tried lots of times
- // then we just continue anyway
- tests++;
- if (tests > 8) {
- previousPoints[i] = pt;
- break;
- }
- } else {
- pt = hit.point;
- }
- }
- bool worked = false;
- for (float q = 0.1f; q <= 1.0f; q += 0.05f) {
- Vector3 qt = Vector3.Lerp(center, pt, q);
- worked = true;
- for (int j = 0; j < i; j++) {
- if ((previousPoints[j] - qt).sqrMagnitude < clearanceRadius) {
- worked = false;
- break;
- }
- }
- // Abort after 8 tests or when we have found a valid point
- if (worked || tests > 8) {
- worked = true;
- previousPoints[i] = qt;
- break;
- }
- }
- // Break out of nested loop
- if (worked) {
- break;
- }
- // If we could not find a valid point, reduce the clearance radius slightly to improve
- // the chances next time
- clearanceRadius *= 0.9f;
- // This will pick points in 2D closer to the edge of the circle with a higher probability
- dir = Random.onUnitSphere * Mathf.Lerp(newMagn, radius, tests / 5);
- dir.y = 0;
- tests++;
- }
- }
- }
- /// <summary>
- /// Returns randomly selected points on the specified nodes with each point being separated by clearanceRadius from each other.
- /// Selecting points ON the nodes only works for TriangleMeshNode (used by Recast Graph and Navmesh Graph) and GridNode (used by GridGraph).
- /// For other node types, only the positions of the nodes will be used.
- ///
- /// clearanceRadius will be reduced if no valid points can be found.
- ///
- /// Note: This method assumes that the nodes in the list have the same type for some special cases.
- /// More specifically if the first node is not a TriangleMeshNode or a GridNode, it will use a fast path
- /// which assumes that all nodes in the list have the same surface area (which usually is a surface area of zero and the
- /// nodes are all PointNodes).
- /// </summary>
- public static List<Vector3> GetPointsOnNodes (List<GraphNode> nodes, int count, float clearanceRadius = 0) {
- if (nodes == null) throw new System.ArgumentNullException("nodes");
- if (nodes.Count == 0) throw new System.ArgumentException("no nodes passed");
- List<Vector3> pts = ListPool<Vector3>.Claim(count);
- // Square
- clearanceRadius *= clearanceRadius;
- if (clearanceRadius > 0 || nodes[0] is TriangleMeshNode
- #if !ASTAR_NO_GRID_GRAPH
- || nodes[0] is GridNode
- #endif
- ) {
- // Accumulated area of all nodes
- List<float> accs = ListPool<float>.Claim(nodes.Count);
- // Total area of all nodes so far
- float tot = 0;
- for (int i = 0; i < nodes.Count; i++) {
- var surfaceArea = nodes[i].SurfaceArea();
- // Ensures that even if the nodes have a surface area of 0, a random one will still be picked
- // instead of e.g always picking the first or the last one.
- surfaceArea += 0.001f;
- tot += surfaceArea;
- accs.Add(tot);
- }
- for (int i = 0; i < count; i++) {
- //Pick point
- int testCount = 0;
- int testLimit = 10;
- bool worked = false;
- while (!worked) {
- worked = true;
- // If no valid points could be found, progressively lower the clearance radius until such a point is found
- if (testCount >= testLimit) {
- // Note that clearanceRadius is a squared radius
- clearanceRadius *= 0.9f*0.9f;
- testLimit += 10;
- if (testLimit > 100) clearanceRadius = 0;
- }
- // Pick a random node among the ones in the list weighted by their area
- float tg = Random.value*tot;
- int v = accs.BinarySearch(tg);
- if (v < 0) v = ~v;
- if (v >= nodes.Count) {
- // Cover edge cases
- worked = false;
- continue;
- }
- var node = nodes[v];
- var p = node.RandomPointOnSurface();
- // Test if it is some distance away from the other points
- if (clearanceRadius > 0) {
- for (int j = 0; j < pts.Count; j++) {
- if ((pts[j]-p).sqrMagnitude < clearanceRadius) {
- worked = false;
- break;
- }
- }
- }
- if (worked) {
- pts.Add(p);
- break;
- }
- testCount++;
- }
- }
- ListPool<float>.Release(ref accs);
- } else {
- // Fast path, assumes all nodes have the same area (usually zero)
- for (int i = 0; i < count; i++) {
- pts.Add((Vector3)nodes[Random.Range(0, nodes.Count)].RandomPointOnSurface());
- }
- }
- return pts;
- }
- }
- }
|