// MIT License - Copyright (C) The Mono.Xna Team // This file is subject to the terms and conditions defined in // file 'LICENSE.txt', which is part of this source code package. using System; namespace CommonLang.Geometry { /// <summary> /// Contains commonly used precalculated values and mathematical operations. /// </summary> public static class MathHelper { /// <summary> /// Represents the mathematical constant e(2.71828175). /// </summary> public const float E = (float)Math.E; /// <summary> /// Represents the log base ten of e(0.4342945). /// </summary> public const float Log10E = 0.4342945f; /// <summary> /// Represents the log base two of e(1.442695). /// </summary> public const float Log2E = 1.442695f; /// <summary> /// Represents the value of pi(3.14159274). /// </summary> public const float Pi = (float)Math.PI; /// <summary> /// Represents the value of pi divided by two(1.57079637). /// </summary> public const float PiOver2 = (float)(Math.PI / 2.0); /// <summary> /// Represents the value of pi divided by four(0.7853982). /// </summary> public const float PiOver4 = (float)(Math.PI / 4.0); /// <summary> /// Represents the value of pi times two(6.28318548). /// </summary> public const float TwoPi = (float)(Math.PI * 2.0); /// <summary> /// Returns the Cartesian coordinate for one axis of a point that is defined by a given triangle and two normalized barycentric (areal) coordinates. /// </summary> /// <param name="value1">The coordinate on one axis of vertex 1 of the defining triangle.</param> /// <param name="value2">The coordinate on the same axis of vertex 2 of the defining triangle.</param> /// <param name="value3">The coordinate on the same axis of vertex 3 of the defining triangle.</param> /// <param name="amount1">The normalized barycentric (areal) coordinate b2, equal to the weighting factor for vertex 2, the coordinate of which is specified in value2.</param> /// <param name="amount2">The normalized barycentric (areal) coordinate b3, equal to the weighting factor for vertex 3, the coordinate of which is specified in value3.</param> /// <returns>Cartesian coordinate of the specified point with respect to the axis being used.</returns> public static float Barycentric(float value1, float value2, float value3, float amount1, float amount2) { return value1 + (value2 - value1) * amount1 + (value3 - value1) * amount2; } /// <summary> /// Performs a Catmull-Rom interpolation using the specified positions. /// </summary> /// <param name="value1">The first position in the interpolation.</param> /// <param name="value2">The second position in the interpolation.</param> /// <param name="value3">The third position in the interpolation.</param> /// <param name="value4">The fourth position in the interpolation.</param> /// <param name="amount">Weighting factor.</param> /// <returns>A position that is the result of the Catmull-Rom interpolation.</returns> public static float CatmullRom(float value1, float value2, float value3, float value4, float amount) { // Using formula from http://www.mvps.org/directx/articles/catmull/ // Internally using doubles not to lose precission double amountSquared = amount * amount; double amountCubed = amountSquared * amount; return (float)(0.5 * (2.0 * value2 + (value3 - value1) * amount + (2.0 * value1 - 5.0 * value2 + 4.0 * value3 - value4) * amountSquared + (3.0 * value2 - value1 - 3.0 * value3 + value4) * amountCubed)); } /// <summary> /// Restricts a value to be within a specified range. /// </summary> /// <param name="value">The value to clamp.</param> /// <param name="min">The minimum value. If <c>value</c> is less than <c>min</c>, <c>min</c> will be returned.</param> /// <param name="max">The maximum value. If <c>value</c> is greater than <c>max</c>, <c>max</c> will be returned.</param> /// <returns>The clamped value.</returns> public static float Clamp(float value, float min, float max) { // First we check to see if we're greater than the max value = (value > max) ? max : value; // Then we check to see if we're less than the min. value = (value < min) ? min : value; // There's no check to see if min > max. return value; } /// <summary> /// Restricts a value to be within a specified range. /// </summary> /// <param name="value">The value to clamp.</param> /// <param name="min">The minimum value. If <c>value</c> is less than <c>min</c>, <c>min</c> will be returned.</param> /// <param name="max">The maximum value. If <c>value</c> is greater than <c>max</c>, <c>max</c> will be returned.</param> /// <returns>The clamped value.</returns> public static int Clamp(int value, int min, int max) { value = (value > max) ? max : value; value = (value < min) ? min : value; return value; } /// <summary> /// Calculates the absolute value of the difference of two values. /// </summary> /// <param name="value1">Source value.</param> /// <param name="value2">Source value.</param> /// <returns>Distance between the two values.</returns> public static float Distance(float value1, float value2) { return Math.Abs(value1 - value2); } /// <summary> /// Performs a Hermite spline interpolation. /// </summary> /// <param name="value1">Source position.</param> /// <param name="tangent1">Source tangent.</param> /// <param name="value2">Source position.</param> /// <param name="tangent2">Source tangent.</param> /// <param name="amount">Weighting factor.</param> /// <returns>The result of the Hermite spline interpolation.</returns> public static float Hermite(float value1, float tangent1, float value2, float tangent2, float amount) { // All transformed to double not to lose precission // Otherwise, for high numbers of param:amount the result is NaN instead of Infinity double v1 = value1, v2 = value2, t1 = tangent1, t2 = tangent2, s = amount, result; double sCubed = s * s * s; double sSquared = s * s; if (amount == 0f) result = value1; else if (amount == 1f) result = value2; else result = (2 * v1 - 2 * v2 + t2 + t1) * sCubed + (3 * v2 - 3 * v1 - 2 * t1 - t2) * sSquared + t1 * s + v1; return (float)result; } /// <summary> /// Linearly interpolates between two values. /// </summary> /// <param name="value1">Source value.</param> /// <param name="value2">Source value.</param> /// <param name="amount">Value between 0 and 1 indicating the weight of value2.</param> /// <returns>Interpolated value.</returns> /// <remarks>This method performs the linear interpolation based on the following formula. /// <c>value1 + (value2 - value1) * amount</c> /// Passing amount a value of 0 will cause value1 to be returned, a value of 1 will cause value2 to be returned. /// </remarks> public static float Lerp(float value1, float value2, float amount) { return value1 + (value2 - value1) * amount; } /// <summary> /// Returns the greater of two values. /// </summary> /// <param name="value1">Source value.</param> /// <param name="value2">Source value.</param> /// <returns>The greater value.</returns> public static float Max(float value1, float value2) { return value1 > value2 ? value1 : value2; } /// <summary> /// Returns the greater of two values. /// </summary> /// <param name="value1">Source value.</param> /// <param name="value2">Source value.</param> /// <returns>The greater value.</returns> public static int Max(int value1, int value2) { return value1 > value2 ? value1 : value2; } /// <summary> /// Returns the lesser of two values. /// </summary> /// <param name="value1">Source value.</param> /// <param name="value2">Source value.</param> /// <returns>The lesser value.</returns> public static float Min(float value1, float value2) { return value1 < value2 ? value1 : value2; } /// <summary> /// Returns the lesser of two values. /// </summary> /// <param name="value1">Source value.</param> /// <param name="value2">Source value.</param> /// <returns>The lesser value.</returns> public static int Min(int value1, int value2) { return value1 < value2 ? value1 : value2; } /// <summary> /// Interpolates between two values using a cubic equation. /// </summary> /// <param name="value1">Source value.</param> /// <param name="value2">Source value.</param> /// <param name="amount">Weighting value.</param> /// <returns>Interpolated value.</returns> public static float SmoothStep(float value1, float value2, float amount) { // It is expected that 0 < amount < 1 // If amount < 0, return value1 // If amount > 1, return value2 float result = MathHelper.Clamp(amount, 0f, 1f); result = MathHelper.Hermite(value1, 0f, value2, 0f, result); return result; } /// <summary> /// Converts radians to degrees. /// </summary> /// <param name="radians">The angle in radians.</param> /// <returns>The angle in degrees.</returns> /// <remarks> /// This method uses double precission internally, /// though it returns single float /// Factor = 180 / pi /// </remarks> public static float ToDegrees(float radians) { return (float)(radians * 57.295779513082320876798154814105); } /// <summary> /// Converts degrees to radians. /// </summary> /// <param name="degrees">The angle in degrees.</param> /// <returns>The angle in radians.</returns> /// <remarks> /// This method uses double precission internally, /// though it returns single float /// Factor = pi / 180 /// </remarks> public static float ToRadians(float degrees) { return (float)(degrees * 0.017453292519943295769236907684886); } /// <summary> /// Reduces a given angle to a value between π and -π. /// </summary> /// <param name="angle">The angle to reduce, in radians.</param> /// <returns>The new angle, in radians.</returns> public static float WrapAngle(float angle) { angle = (float)Math.IEEERemainder((double)angle, 6.2831854820251465); if (angle <= -3.14159274f) { angle += 6.28318548f; } else { if (angle > 3.14159274f) { angle -= 6.28318548f; } } return angle; } /// <summary> /// Determines if value is powered by two. /// </summary> /// <param name="value">A value.</param> /// <returns><c>true</c> if <c>value</c> is powered by two; otherwise <c>false</c>.</returns> public static bool IsPowerOfTwo(int value) { return (value > 0) && ((value & (value - 1)) == 0); } } }