123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257 |
- using System;
- using System.Collections.Generic;
- using System.Linq;
- using System.Text;
- namespace CommonLang.Geometry
- {
- /// <summary>
- /// A code container for collision-related mathematical functions.
- /// </summary>
- static public class CollisionMath
- {
- /// <summary>
- /// Data defining a circle/line collision result.
- /// </summary>
- /// <remarks>Also used for circle/rectangles.</remarks>
- public struct CircleLineCollisionResult
- {
- public bool Collision;
- public Vector2 Point;
- public Vector2 Normal;
- public float Distance;
- }
- /// <summary>
- /// Determine if two circles intersect or contain each other.
- /// </summary>
- /// <param name="center1">The center of the first circle.</param>
- /// <param name="radius1">The radius of the first circle.</param>
- /// <param name="center2">The center of the second circle.</param>
- /// <param name="radius2">The radius of the second circle.</param>
- /// <returns>True if the circles intersect or contain one another.</returns>
- public static bool CircleCircleIntersect(Vector2 center1, float radius1, Vector2 center2, float radius2)
- {
- Vector2 line = center2 - center1;
- // we use LengthSquared to avoid a costly square-root call
- return (line.LengthSquared() <= (radius1 + radius2) * (radius1 + radius2));
- }
- /// <summary>
- /// Determines the point of intersection between two line segments,
- /// as defined by four points.
- /// </summary>
- /// <param name="a">The first point on the first line segment.</param>
- /// <param name="b">The second point on the first line segment.</param>
- /// <param name="c">The first point on the second line segment.</param>
- /// <param name="d">The second point on the second line segment.</param>
- /// <param name="point">The output value with the interesection, if any.</param>
- /// <remarks>The output parameter "point" is only valid
- /// when the return value is true.</remarks>
- /// <returns>True if intersecting, false otherwise.</returns>
- public static bool LineLineIntersect(Vector2 a, Vector2 b, Vector2 c, Vector2 d, out Vector2 point)
- {
- point = Vector2.Zero;
- double r, s;
- double denominator = (b.X - a.X) * (d.Y - c.Y) - (b.Y - a.Y) * (d.X - c.X);
- // If the denominator in above is zero, AB & CD are colinear
- if (denominator == 0)
- {
- return false;
- }
- double numeratorR = (a.Y - c.Y) * (d.X - c.X) - (a.X - c.X) * (d.Y - c.Y);
- r = numeratorR / denominator;
- double numeratorS = (a.Y - c.Y) * (b.X - a.X) - (a.X - c.X) * (b.Y - a.Y);
- s = numeratorS / denominator;
- // non-intersecting
- if (r < 0 || r > 1 || s < 0 || s > 1)
- {
- return false;
- }
- // find intersection point
- point.X = (float)(a.X + (r * (b.X - a.X)));
- point.Y = (float)(a.Y + (r * (b.Y - a.Y)));
- return true;
- }
- public static bool LineLineIntersect(Vector2 a, Vector2 b, Vector2 c, Vector2 d)
- {
- double r, s;
- double denominator = (b.X - a.X) * (d.Y - c.Y) - (b.Y - a.Y) * (d.X - c.X);
- // If the denominator in above is zero, AB & CD are colinear
- if (denominator == 0)
- {
- return false;
- }
- double numeratorR = (a.Y - c.Y) * (d.X - c.X) - (a.X - c.X) * (d.Y - c.Y);
- r = numeratorR / denominator;
- double numeratorS = (a.Y - c.Y) * (b.X - a.X) - (a.X - c.X) * (b.Y - a.Y);
- s = numeratorS / denominator;
- // non-intersecting
- if (r < 0 || r > 1 || s < 0 || s > 1)
- {
- return false;
- }
- return true;
- }
- /// <summary>
- /// Determines if a circle and line segment intersect, and if so, how they do.
- /// </summary>
- /// <param name="center">The center of the circle.</param>
- /// <param name="radius">The radius of the circle.</param>
- /// <param name="lineStart">The first point on the line segment.</param>
- /// <param name="lineEnd">The second point on the line segment.</param>
- /// <param name="result">The result data for the collision.</param>
- /// <returns>True if a collision occurs, provided for convenience.</returns>
- public static bool CircleLineCollide(Vector2 center, float radius, Vector2 lineStart, Vector2 lineEnd, ref CircleLineCollisionResult result)
- {
- Vector2 AC = center - lineStart;
- Vector2 AB = lineEnd - lineStart;
- float ab2 = AB.LengthSquared();
- if (ab2 <= 0f)
- {
- return false;
- }
- float acab = Vector2.Dot(AC, AB);
- float t = acab / ab2;
- if (t < 0.0f)
- t = 0.0f;
- else if (t > 1.0f)
- t = 1.0f;
- result.Point = lineStart + t * AB;
- result.Normal = center - result.Point;
- float h2 = result.Normal.LengthSquared();
- float r2 = radius * radius;
- if ((h2 == 0) || (h2 <= r2))
- {
- result.Normal.Normalize();
- result.Distance = (radius - (center - result.Point).Length());
- result.Collision = true;
- }
- else
- {
- result.Collision = false;
- }
- return result.Collision;
- }
- public static bool CircleLineCollide(Vector2 center, float radius, Vector2 lineStart, Vector2 lineEnd)
- {
- Vector2 AC = center - lineStart;
- Vector2 AB = lineEnd - lineStart;
- float ab2 = AB.LengthSquared();
- if (ab2 <= 0f)
- {
- return false;
- }
- float acab = Vector2.Dot(AC, AB);
- float t = acab / ab2;
- if (t < 0.0f)
- t = 0.0f;
- else if (t > 1.0f)
- t = 1.0f;
- Vector2 resultPoint = lineStart + t * AB;
- Vector2 resultNormal = center - resultPoint;
- float h2 = resultNormal.LengthSquared();
- float r2 = radius * radius;
- if ((h2 == 0) || (h2 <= r2))
- {
- return true;
- }
- else
- {
- return false;
- }
- }
- /// <summary>
- /// 点在凸多边形内部。
- /// </summary>
- /// <param name="center"></param>
- /// <param name="list"></param>
- /// <returns></returns>
- public static bool PointInPolygon(Vector2 center, Vector2[] list)
- {
- int wn = 0, j = 0; //wn 计数器 j第二个
- for (int i = 0; i < list.Length; i++)
- {
- //开始循环
- if (i == list.Length - 1)
- {
- j = 0;//如果 循环到最后一点 第二个指针指向第一点
- }
- else
- {
- j = j + 1; //如果不是 ,则找下一点
- }
- if (list[i].Y <= center.Y) // 如果多边形的点 小于等于 选定点的 Y 坐标
- {
- if (list[j].Y > center.Y) // 如果多边形的下一点 大于于 选定点的 Y 坐标
- {
- if (isLeft(list[i], list[j], center) > 0)
- {
- wn++;
- }
- }
- }
- else
- {
- if (list[j].Y <= center.Y)
- {
- if (isLeft(list[i], list[j], center) < 0)
- {
- wn--;
- }
- }
- }
- }
- if (wn == 0)
- {
- return false;
- }
- else
- {
- return true;
- }
- }
- //判断点在线的一边
- public static float isLeft(Vector2 P0, Vector2 P1, Vector2 P2)
- {
- float abc = ((P1.X - P0.X) * (P2.Y - P0.Y) - (P2.X - P0.X) * (P1.Y - P0.Y));
- return abc;
- }
- public static Vector2 MoveToByRadians(Vector2 p, float degree, float distance)
- {
- return new Vector2(
- p.X + (float)(Math.Cos(degree) * distance),
- p.Y + (float)(Math.Sin(degree) * distance));
- }
- }
- }
|