using UnityEngine;
using System.Collections;
using System.Collections.Generic;
namespace Pathfinding {
using Pathfinding.RVO;
using Pathfinding.Util;
[AddComponentMenu("Pathfinding/AI/RichAI (3D, for navmesh)")]
///
/// Advanced AI for navmesh based graphs.
///
/// [Open online documentation to see images]
///
/// See: movementscripts (view in online documentation for working links)
///
public partial class RichAI : AIBase, IAstarAI {
///
/// Max acceleration of the agent.
/// In world units per second per second.
///
public float acceleration = 5;
///
/// Max rotation speed of the agent.
/// In degrees per second.
///
public float rotationSpeed = 360;
///
/// How long before reaching the end of the path to start to slow down.
/// A lower value will make the agent stop more abruptly.
///
/// Note: The agent may require more time to slow down if
/// its maximum is not high enough.
///
/// If set to zero the agent will not even attempt to slow down.
/// This can be useful if the target point is not a point you want the agent to stop at
/// but it might for example be the player and you want the AI to slam into the player.
///
/// Note: A value of zero will behave differently from a small but non-zero value (such as 0.0001).
/// When it is non-zero the agent will still respect its when determining if it needs
/// to slow down, but if it is zero it will disable that check.
/// This is useful if the is not a point where you want the agent to stop.
///
/// \htmlonly \endhtmlonly
///
public float slowdownTime = 0.5f;
///
/// Max distance to the endpoint to consider it reached.
///
/// See:
/// See:
///
public float endReachedDistance = 0.01f;
///
/// Force to avoid walls with.
/// The agent will try to steer away from walls slightly.
///
/// See:
///
public float wallForce = 3;
///
/// Walls within this range will be used for avoidance.
/// Setting this to zero disables wall avoidance and may improve performance slightly
///
/// See:
///
public float wallDist = 1;
///
/// Use funnel simplification.
/// On tiled navmesh maps, but sometimes on normal ones as well, it can be good to simplify
/// the funnel as a post-processing step to make the paths straighter.
///
/// This has a moderate performance impact during frames when a path calculation is completed.
///
/// The RichAI script uses its own internal funnel algorithm, so you never
/// need to attach the FunnelModifier component.
///
/// [Open online documentation to see images]
///
/// See:
///
public bool funnelSimplification = false;
///
/// Slow down when not facing the target direction.
/// Incurs at a small performance overhead.
///
public bool slowWhenNotFacingTarget = true;
///
/// Called when the agent starts to traverse an off-mesh link.
/// Register to this callback to handle off-mesh links in a custom way.
///
/// If this event is set to null then the agent will fall back to traversing
/// off-mesh links using a very simple linear interpolation.
///
///
/// void OnEnable () {
/// ai = GetComponent();
/// if (ai != null) ai.onTraverseOffMeshLink += TraverseOffMeshLink;
/// }
///
/// void OnDisable () {
/// if (ai != null) ai.onTraverseOffMeshLink -= TraverseOffMeshLink;
/// }
///
/// IEnumerator TraverseOffMeshLink (RichSpecial link) {
/// // Traverse the link over 1 second
/// float startTime = Time.time;
///
/// while (Time.time < startTime + 1) {
/// transform.position = Vector3.Lerp(link.first.position, link.second.position, Time.time - startTime);
/// yield return null;
/// }
/// transform.position = link.second.position;
/// }
///
///
public System.Func onTraverseOffMeshLink;
/// Holds the current path that this agent is following
protected readonly RichPath richPath = new RichPath();
protected bool delayUpdatePath;
protected bool lastCorner;
/// Distance to in the movement plane
protected float distanceToSteeringTarget = float.PositiveInfinity;
protected readonly List nextCorners = new List();
protected readonly List wallBuffer = new List();
public bool traversingOffMeshLink { get; protected set; }
/// \copydoc Pathfinding::IAstarAI::remainingDistance
public float remainingDistance {
get {
return distanceToSteeringTarget + Vector3.Distance(steeringTarget, richPath.Endpoint);
}
}
/// \copydoc Pathfinding::IAstarAI::reachedEndOfPath
public bool reachedEndOfPath { get { return approachingPathEndpoint && distanceToSteeringTarget < endReachedDistance; } }
/// \copydoc Pathfinding::IAstarAI::reachedDestination
public bool reachedDestination {
get {
if (!reachedEndOfPath) return false;
// Note: distanceToSteeringTarget is the distance to the end of the path when approachingPathEndpoint is true
if (approachingPathEndpoint && distanceToSteeringTarget + movementPlane.ToPlane(destination - richPath.Endpoint).magnitude > endReachedDistance) return false;
// Don't do height checks in 2D mode
if (orientation != OrientationMode.YAxisForward) {
// Check if the destination is above the head of the character or far below the feet of it
float yDifference;
movementPlane.ToPlane(destination - position, out yDifference);
var h = tr.localScale.y * height;
if (yDifference > h || yDifference < -h*0.5) return false;
}
return true;
}
}
/// \copydoc Pathfinding::IAstarAI::hasPath
public bool hasPath { get { return richPath.GetCurrentPart() != null; } }
/// \copydoc Pathfinding::IAstarAI::pathPending
public bool pathPending { get { return waitingForPathCalculation || delayUpdatePath; } }
/// \copydoc Pathfinding::IAstarAI::steeringTarget
public Vector3 steeringTarget { get; protected set; }
/// \copydoc Pathfinding::IAstarAI::radius
float IAstarAI.radius { get { return radius; } set { radius = value; } }
/// \copydoc Pathfinding::IAstarAI::height
float IAstarAI.height { get { return height; } set { height = value; } }
/// \copydoc Pathfinding::IAstarAI::maxSpeed
float IAstarAI.maxSpeed { get { return maxSpeed; } set { maxSpeed = value; } }
/// \copydoc Pathfinding::IAstarAI::canSearch
bool IAstarAI.canSearch { get { return canSearch; } set { canSearch = value; } }
/// \copydoc Pathfinding::IAstarAI::canMove
bool IAstarAI.canMove { get { return canMove; } set { canMove = value; } }
///
/// True if approaching the last waypoint in the current part of the path.
/// Path parts are separated by off-mesh links.
///
/// See:
///
public bool approachingPartEndpoint {
get {
return lastCorner && nextCorners.Count == 1;
}
}
///
/// True if approaching the last waypoint of all parts in the current path.
/// Path parts are separated by off-mesh links.
///
/// See:
///
public bool approachingPathEndpoint {
get {
return approachingPartEndpoint && richPath.IsLastPart;
}
}
///
/// \copydoc Pathfinding::IAstarAI::Teleport
///
/// When setting transform.position directly the agent
/// will be clamped to the part of the navmesh it can
/// reach, so it may not end up where you wanted it to.
/// This ensures that the agent can move to any part of the navmesh.
///
public override void Teleport (Vector3 newPosition, bool clearPath = true) {
// Clamp the new position to the navmesh
var nearest = AstarPath.active != null? AstarPath.active.GetNearest(newPosition) : new NNInfo();
float elevation;
movementPlane.ToPlane(newPosition, out elevation);
newPosition = movementPlane.ToWorld(movementPlane.ToPlane(nearest.node != null ? nearest.position : newPosition), elevation);
base.Teleport(newPosition, clearPath);
}
/// Called when the component is disabled
protected override void OnDisable () {
// Note that the AIBase.OnDisable call will also stop all coroutines
base.OnDisable();
traversingOffMeshLink = false;
// Stop the off mesh link traversal coroutine
StopAllCoroutines();
}
protected override bool shouldRecalculatePath {
get {
// Don't automatically recalculate the path in the middle of an off-mesh link
return base.shouldRecalculatePath && !traversingOffMeshLink;
}
}
public override void SearchPath () {
// Calculate paths after the current off-mesh link has been completed
if (traversingOffMeshLink) {
delayUpdatePath = true;
} else {
base.SearchPath();
}
}
protected override void OnPathComplete (Path p) {
waitingForPathCalculation = false;
p.Claim(this);
if (p.error) {
p.Release(this);
return;
}
if (traversingOffMeshLink) {
delayUpdatePath = true;
} else {
// The RandomPath and MultiTargetPath do not have a well defined destination that could have been
// set before the paths were calculated. So we instead set the destination here so that some properties
// like #reachedDestination and #remainingDistance work correctly.
if (p is RandomPath rpath) {
destination = rpath.originalEndPoint;
} else if (p is MultiTargetPath mpath) {
destination = mpath.originalEndPoint;
}
richPath.Initialize(seeker, p, true, funnelSimplification);
// Check if we have already reached the end of the path
// We need to do this here to make sure that the #reachedEndOfPath
// property is up to date.
var part = richPath.GetCurrentPart() as RichFunnel;
if (part != null) {
if (updatePosition) simulatedPosition = tr.position;
// Note: UpdateTarget has some side effects like setting the nextCorners list and the lastCorner field
var localPosition = movementPlane.ToPlane(UpdateTarget(part));
// Target point
steeringTarget = nextCorners[0];
Vector2 targetPoint = movementPlane.ToPlane(steeringTarget);
distanceToSteeringTarget = (targetPoint - localPosition).magnitude;
if (lastCorner && nextCorners.Count == 1 && distanceToSteeringTarget <= endReachedDistance) {
NextPart();
}
}
}
p.Release(this);
}
protected override void ClearPath () {
CancelCurrentPathRequest();
richPath.Clear();
lastCorner = false;
delayUpdatePath = false;
distanceToSteeringTarget = float.PositiveInfinity;
}
///
/// Declare that the AI has completely traversed the current part.
/// This will skip to the next part, or call OnTargetReached if this was the last part
///
protected void NextPart () {
if (!richPath.CompletedAllParts) {
if (!richPath.IsLastPart) lastCorner = false;
richPath.NextPart();
if (richPath.CompletedAllParts) {
OnTargetReached();
}
}
}
/// \copydoc Pathfinding::IAstarAI::GetRemainingPath
public void GetRemainingPath (List buffer, out bool stale) {
richPath.GetRemainingPath(buffer, simulatedPosition, out stale);
}
/// Called when the end of the path is reached
protected virtual void OnTargetReached () {
}
protected virtual Vector3 UpdateTarget (RichFunnel fn) {
nextCorners.Clear();
// This method assumes simulatedPosition is up to date as our current position.
// We read and write to tr.position as few times as possible since doing so
// is much slower than to read and write from/to a local/member variable.
bool requiresRepath;
Vector3 position = fn.Update(simulatedPosition, nextCorners, 2, out lastCorner, out requiresRepath);
if (requiresRepath && !waitingForPathCalculation && canSearch) {
// TODO: What if canSearch is false? How do we notify other scripts that might be handling the path calculation that a new path needs to be calculated?
SearchPath();
}
return position;
}
/// Called during either Update or FixedUpdate depending on if rigidbodies are used for movement or not
protected override void MovementUpdateInternal (float deltaTime, out Vector3 nextPosition, out Quaternion nextRotation) {
if (updatePosition) simulatedPosition = tr.position;
if (updateRotation) simulatedRotation = tr.rotation;
RichPathPart currentPart = richPath.GetCurrentPart();
if (currentPart is RichSpecial) {
// Start traversing the off mesh link if we haven't done it yet
if (!traversingOffMeshLink && !richPath.CompletedAllParts) {
StartCoroutine(TraverseSpecial(currentPart as RichSpecial));
}
nextPosition = steeringTarget = simulatedPosition;
nextRotation = rotation;
} else {
var funnel = currentPart as RichFunnel;
// Check if we have a valid path to follow and some other script has not stopped the character
if (funnel != null && !isStopped) {
TraverseFunnel(funnel, deltaTime, out nextPosition, out nextRotation);
} else {
// Unknown, null path part, or the character is stopped
// Slow down as quickly as possible
velocity2D -= Vector2.ClampMagnitude(velocity2D, acceleration * deltaTime);
FinalMovement(simulatedPosition, deltaTime, float.PositiveInfinity, 1f, out nextPosition, out nextRotation);
steeringTarget = simulatedPosition;
}
}
}
void TraverseFunnel (RichFunnel fn, float deltaTime, out Vector3 nextPosition, out Quaternion nextRotation) {
// Clamp the current position to the navmesh
// and update the list of upcoming corners in the path
// and store that in the 'nextCorners' field
var position3D = UpdateTarget(fn);
float elevation;
Vector2 position = movementPlane.ToPlane(position3D, out elevation);
// Only find nearby walls every 5th frame to improve performance
if (Time.frameCount % 5 == 0 && wallForce > 0 && wallDist > 0) {
wallBuffer.Clear();
fn.FindWalls(wallBuffer, wallDist);
}
// Target point
steeringTarget = nextCorners[0];
Vector2 targetPoint = movementPlane.ToPlane(steeringTarget);
// Direction to target
Vector2 dir = targetPoint - position;
// Normalized direction to the target
Vector2 normdir = VectorMath.Normalize(dir, out distanceToSteeringTarget);
// Calculate force from walls
Vector2 wallForceVector = CalculateWallForce(position, elevation, normdir);
Vector2 targetVelocity;
if (approachingPartEndpoint) {
targetVelocity = slowdownTime > 0 ? Vector2.zero : normdir * maxSpeed;
// Reduce the wall avoidance force as we get closer to our target
wallForceVector *= System.Math.Min(distanceToSteeringTarget/0.5f, 1);
if (distanceToSteeringTarget <= endReachedDistance) {
// Reached the end of the path or an off mesh link
NextPart();
}
} else {
var nextNextCorner = nextCorners.Count > 1 ? movementPlane.ToPlane(nextCorners[1]) : position + 2*dir;
targetVelocity = (nextNextCorner - targetPoint).normalized * maxSpeed;
}
var forwards = movementPlane.ToPlane(simulatedRotation * (orientation == OrientationMode.YAxisForward ? Vector3.up : Vector3.forward));
Vector2 accel = MovementUtilities.CalculateAccelerationToReachPoint(targetPoint - position, targetVelocity, velocity2D, acceleration, rotationSpeed, maxSpeed, forwards);
// Update the velocity using the acceleration
velocity2D += (accel + wallForceVector*wallForce)*deltaTime;
// Distance to the end of the path (almost as the crow flies)
var distanceToEndOfPath = distanceToSteeringTarget + Vector3.Distance(steeringTarget, fn.exactEnd);
var slowdownFactor = distanceToEndOfPath < maxSpeed * slowdownTime? Mathf.Sqrt(distanceToEndOfPath / (maxSpeed * slowdownTime)) : 1;
FinalMovement(position3D, deltaTime, distanceToEndOfPath, slowdownFactor, out nextPosition, out nextRotation);
}
void FinalMovement (Vector3 position3D, float deltaTime, float distanceToEndOfPath, float slowdownFactor, out Vector3 nextPosition, out Quaternion nextRotation) {
var forwards = movementPlane.ToPlane(simulatedRotation * (orientation == OrientationMode.YAxisForward ? Vector3.up : Vector3.forward));
velocity2D = MovementUtilities.ClampVelocity(velocity2D, maxSpeed, slowdownFactor, slowWhenNotFacingTarget && enableRotation, forwards);
ApplyGravity(deltaTime);
if (rvoController != null && rvoController.enabled) {
// Send a message to the RVOController that we want to move
// with this velocity. In the next simulation step, this
// velocity will be processed and it will be fed back to the
// rvo controller and finally it will be used by this script
// when calling the CalculateMovementDelta method below
// Make sure that we don't move further than to the end point
// of the path. If the RVO simulation FPS is low and we did
// not do this, the agent might overshoot the target a lot.
var rvoTarget = position3D + movementPlane.ToWorld(Vector2.ClampMagnitude(velocity2D, distanceToEndOfPath));
rvoController.SetTarget(rvoTarget, velocity2D.magnitude, maxSpeed);
}
// Direction and distance to move during this frame
var deltaPosition = lastDeltaPosition = CalculateDeltaToMoveThisFrame(movementPlane.ToPlane(position3D), distanceToEndOfPath, deltaTime);
// Rotate towards the direction we are moving in
// Slow down the rotation of the character very close to the endpoint of the path to prevent oscillations
var rotationSpeedFactor = approachingPartEndpoint ? Mathf.Clamp01(1.1f * slowdownFactor - 0.1f) : 1f;
nextRotation = enableRotation ? SimulateRotationTowards(deltaPosition, rotationSpeed * rotationSpeedFactor * deltaTime) : simulatedRotation;
nextPosition = position3D + movementPlane.ToWorld(deltaPosition, verticalVelocity * deltaTime);
}
protected override Vector3 ClampToNavmesh (Vector3 position, out bool positionChanged) {
if (richPath != null) {
var funnel = richPath.GetCurrentPart() as RichFunnel;
if (funnel != null) {
var clampedPosition = funnel.ClampToNavmesh(position);
// We cannot simply check for equality because some precision may be lost
// if any coordinate transformations are used.
var difference = movementPlane.ToPlane(clampedPosition - position);
float sqrDifference = difference.sqrMagnitude;
if (sqrDifference > 0.001f*0.001f) {
// The agent was outside the navmesh. Remove that component of the velocity
// so that the velocity only goes along the direction of the wall, not into it
velocity2D -= difference * Vector2.Dot(difference, velocity2D) / sqrDifference;
// Make sure the RVO system knows that there was a collision here
// Otherwise other agents may think this agent continued
// to move forwards and avoidance quality may suffer
if (rvoController != null && rvoController.enabled) {
rvoController.SetCollisionNormal(difference);
}
positionChanged = true;
// Return the new position, but ignore any changes in the y coordinate from the ClampToNavmesh method as the y coordinates in the navmesh are rarely very accurate
return position + movementPlane.ToWorld(difference);
}
}
}
positionChanged = false;
return position;
}
Vector2 CalculateWallForce (Vector2 position, float elevation, Vector2 directionToTarget) {
if (wallForce <= 0 || wallDist <= 0) return Vector2.zero;
float wLeft = 0;
float wRight = 0;
var position3D = movementPlane.ToWorld(position, elevation);
for (int i = 0; i < wallBuffer.Count; i += 2) {
Vector3 closest = VectorMath.ClosestPointOnSegment(wallBuffer[i], wallBuffer[i+1], position3D);
float dist = (closest-position3D).sqrMagnitude;
if (dist > wallDist*wallDist) continue;
Vector2 tang = movementPlane.ToPlane(wallBuffer[i+1]-wallBuffer[i]).normalized;
// Using the fact that all walls are laid out clockwise (looking from inside the obstacle)
// Then left and right (ish) can be figured out like this
float dot = Vector2.Dot(directionToTarget, tang);
float weight = 1 - System.Math.Max(0, (2*(dist / (wallDist*wallDist))-1));
if (dot > 0) wRight = System.Math.Max(wRight, dot * weight);
else wLeft = System.Math.Max(wLeft, -dot * weight);
}
Vector2 normal = new Vector2(directionToTarget.y, -directionToTarget.x);
return normal*(wRight-wLeft);
}
/// Traverses an off-mesh link
protected virtual IEnumerator TraverseSpecial (RichSpecial link) {
traversingOffMeshLink = true;
// The current path part is a special part, for example a link
// Movement during this part of the path is handled by the TraverseSpecial coroutine
velocity2D = Vector3.zero;
var offMeshLinkCoroutine = onTraverseOffMeshLink != null? onTraverseOffMeshLink(link) : TraverseOffMeshLinkFallback(link);
yield return StartCoroutine(offMeshLinkCoroutine);
// Off-mesh link traversal completed
traversingOffMeshLink = false;
NextPart();
// If a path completed during the time we traversed the special connection, we need to recalculate it
if (delayUpdatePath) {
delayUpdatePath = false;
// TODO: What if canSearch is false? How do we notify other scripts that might be handling the path calculation that a new path needs to be calculated?
if (canSearch) SearchPath();
}
}
///
/// Fallback for traversing off-mesh links in case is not set.
/// This will do a simple linear interpolation along the link.
///
protected IEnumerator TraverseOffMeshLinkFallback (RichSpecial link) {
float duration = maxSpeed > 0 ? Vector3.Distance(link.second.position, link.first.position) / maxSpeed : 1;
float startTime = Time.time;
while (true) {
var pos = Vector3.Lerp(link.first.position, link.second.position, Mathf.InverseLerp(startTime, startTime + duration, Time.time));
if (updatePosition) tr.position = pos;
else simulatedPosition = pos;
if (Time.time >= startTime + duration) break;
yield return null;
}
}
protected static readonly Color GizmoColorPath = new Color(8.0f/255, 78.0f/255, 194.0f/255);
protected override void OnDrawGizmos () {
base.OnDrawGizmos();
if (tr != null) {
Gizmos.color = GizmoColorPath;
Vector3 lastPosition = position;
for (int i = 0; i < nextCorners.Count; lastPosition = nextCorners[i], i++) {
Gizmos.DrawLine(lastPosition, nextCorners[i]);
}
}
}
protected override int OnUpgradeSerializedData (int version, bool unityThread) {
#pragma warning disable 618
if (unityThread && animCompatibility != null) anim = animCompatibility;
#pragma warning restore 618
return base.OnUpgradeSerializedData(version, unityThread);
}
}
}