#pragma warning disable 414
using System.Collections.Generic;
using UnityEngine;
namespace Pathfinding {
public enum HeuristicOptimizationMode {
None,
Random,
RandomSpreadOut,
Custom
}
///
/// Implements heuristic optimizations.
///
/// See: heuristic-opt
/// See: Game AI Pro - Pathfinding Architecture Optimizations by Steve Rabin and Nathan R. Sturtevant
///
[System.Serializable]
public class EuclideanEmbedding {
///
/// If heuristic optimization should be used and how to place the pivot points.
/// See: heuristic-opt
/// See: Game AI Pro - Pathfinding Architecture Optimizations by Steve Rabin and Nathan R. Sturtevant
///
public HeuristicOptimizationMode mode;
public int seed;
/// All children of this transform will be used as pivot points
public Transform pivotPointRoot;
public int spreadOutCount = 1;
[System.NonSerialized]
public bool dirty;
///
/// Costs laid out as n*[int],n*[int],n*[int] where n is the number of pivot points.
/// Each node has n integers which is the cost from that node to the pivot node.
/// They are at around the same place in the array for simplicity and for cache locality.
///
/// cost(nodeIndex, pivotIndex) = costs[nodeIndex*pivotCount+pivotIndex]
///
uint[] costs = new uint[8];
int maxNodeIndex;
int pivotCount;
GraphNode[] pivots;
/*
* Seed for random number generator.
* Must not be zero
*/
const uint ra = 12820163;
/*
* Seed for random number generator.
* Must not be zero
*/
const uint rc = 1140671485;
/*
* Parameter for random number generator.
*/
uint rval;
System.Object lockObj = new object();
///
/// Simple linear congruential generator.
/// See: http://en.wikipedia.org/wiki/Linear_congruential_generator
///
uint GetRandom () {
rval = (ra*rval + rc);
return rval;
}
void EnsureCapacity (int index) {
if (index > maxNodeIndex) {
lock (lockObj) {
if (index > maxNodeIndex) {
if (index >= costs.Length) {
var newCosts = new uint[System.Math.Max(index*2, pivots.Length*2)];
for (int i = 0; i < costs.Length; i++) newCosts[i] = costs[i];
costs = newCosts;
}
maxNodeIndex = index;
}
}
}
}
public uint GetHeuristic (int nodeIndex1, int nodeIndex2) {
nodeIndex1 *= pivotCount;
nodeIndex2 *= pivotCount;
if (nodeIndex1 >= costs.Length || nodeIndex2 >= costs.Length) {
EnsureCapacity(nodeIndex1 > nodeIndex2 ? nodeIndex1 : nodeIndex2);
}
uint mx = 0;
for (int i = 0; i < pivotCount; i++) {
uint d = (uint)System.Math.Abs((int)costs[nodeIndex1+i] - (int)costs[nodeIndex2+i]);
if (d > mx) mx = d;
}
return mx;
}
void GetClosestWalkableNodesToChildrenRecursively (Transform tr, List nodes) {
foreach (Transform ch in tr) {
var info = AstarPath.active.GetNearest(ch.position, NNConstraint.Default);
if (info.node != null && info.node.Walkable) {
nodes.Add(info.node);
}
GetClosestWalkableNodesToChildrenRecursively(ch, nodes);
}
}
///
/// Pick N random walkable nodes from all nodes in all graphs and add them to the buffer.
///
/// Here we select N random nodes from a stream of nodes.
/// Probability of choosing the first N nodes is 1
/// Probability of choosing node i is min(N/i,1)
/// A selected node will replace a random node of the previously
/// selected ones.
///
/// See: https://en.wikipedia.org/wiki/Reservoir_sampling
///
void PickNRandomNodes (int count, List buffer) {
int n = 0;
var graphs = AstarPath.active.graphs;
// Loop through all graphs
for (int j = 0; j < graphs.Length; j++) {
// Loop through all nodes in the graph
graphs[j].GetNodes(node => {
if (!node.Destroyed && node.Walkable) {
n++;
if ((GetRandom() % n) < count) {
if (buffer.Count < count) {
buffer.Add(node);
} else {
buffer[(int)(GetRandom()%buffer.Count)] = node;
}
}
}
});
}
}
GraphNode PickAnyWalkableNode () {
var graphs = AstarPath.active.graphs;
GraphNode first = null;
// Find any node in the graphs
for (int j = 0; j < graphs.Length; j++) {
graphs[j].GetNodes(node => {
if (node != null && node.Walkable && first == null) {
first = node;
}
});
}
return first;
}
public void RecalculatePivots () {
if (mode == HeuristicOptimizationMode.None) {
pivotCount = 0;
pivots = null;
return;
}
// Reset the random number generator
rval = (uint)seed;
// Get a List from a pool
var pivotList = Pathfinding.Util.ListPool.Claim();
switch (mode) {
case HeuristicOptimizationMode.Custom:
if (pivotPointRoot == null) throw new System.Exception("heuristicOptimizationMode is HeuristicOptimizationMode.Custom, " +
"but no 'customHeuristicOptimizationPivotsRoot' is set");
GetClosestWalkableNodesToChildrenRecursively(pivotPointRoot, pivotList);
break;
case HeuristicOptimizationMode.Random:
PickNRandomNodes(spreadOutCount, pivotList);
break;
case HeuristicOptimizationMode.RandomSpreadOut:
if (pivotPointRoot != null) {
GetClosestWalkableNodesToChildrenRecursively(pivotPointRoot, pivotList);
}
// If no pivot points were found, fall back to picking arbitrary nodes
if (pivotList.Count == 0) {
GraphNode first = PickAnyWalkableNode();
if (first != null) {
pivotList.Add(first);
} else {
Debug.LogError("Could not find any walkable node in any of the graphs.");
Pathfinding.Util.ListPool.Release(ref pivotList);
return;
}
}
// Fill remaining slots with null
int toFill = spreadOutCount - pivotList.Count;
for (int i = 0; i < toFill; i++) pivotList.Add(null);
break;
default:
throw new System.Exception("Invalid HeuristicOptimizationMode: " + mode);
}
pivots = pivotList.ToArray();
Pathfinding.Util.ListPool.Release(ref pivotList);
}
public void RecalculateCosts () {
if (pivots == null) RecalculatePivots();
if (mode == HeuristicOptimizationMode.None) return;
pivotCount = 0;
for (int i = 0; i < pivots.Length; i++) {
if (pivots[i] != null && (pivots[i].Destroyed || !pivots[i].Walkable)) {
throw new System.Exception("Invalid pivot nodes (destroyed or unwalkable)");
}
}
if (mode != HeuristicOptimizationMode.RandomSpreadOut)
for (int i = 0; i < pivots.Length; i++)
if (pivots[i] == null)
throw new System.Exception("Invalid pivot nodes (null)");
Debug.Log("Recalculating costs...");
pivotCount = pivots.Length;
System.Action startCostCalculation = null;
int numComplete = 0;
OnPathDelegate onComplete = (Path path) => {
numComplete++;
if (numComplete == pivotCount) {
// Last completed path
ApplyGridGraphEndpointSpecialCase();
}
};
startCostCalculation = (int pivotIndex) => {
GraphNode pivot = pivots[pivotIndex];
FloodPath floodPath = null;
floodPath = FloodPath.Construct(pivot, onComplete);
floodPath.immediateCallback = (Path _p) => {
// Handle path pooling
_p.Claim(this);
// When paths are calculated on navmesh based graphs
// the costs are slightly modified to match the actual target and start points
// instead of the node centers
// so we have to remove the cost for the first and last connection
// in each path
var meshNode = pivot as MeshNode;
uint costOffset = 0;
if (meshNode != null && meshNode.connections != null) {
for (int i = 0; i < meshNode.connections.Length; i++) {
costOffset = System.Math.Max(costOffset, meshNode.connections[i].cost);
}
}
var graphs = AstarPath.active.graphs;
// Process graphs in reverse order to raise probability that we encounter large NodeIndex values quicker
// to avoid resizing the internal array too often
for (int j = graphs.Length-1; j >= 0; j--) {
graphs[j].GetNodes(node => {
int idx = node.NodeIndex*pivotCount + pivotIndex;
EnsureCapacity(idx);
PathNode pn = ((IPathInternals)floodPath).PathHandler.GetPathNode(node);
if (costOffset > 0) {
costs[idx] = pn.pathID == floodPath.pathID && pn.parent != null ? System.Math.Max(pn.parent.G-costOffset, 0) : 0;
} else {
costs[idx] = pn.pathID == floodPath.pathID ? pn.G : 0;
}
});
}
if (mode == HeuristicOptimizationMode.RandomSpreadOut && pivotIndex < pivots.Length-1) {
// If the next pivot is null
// then find the node which is furthest away from the earlier
// pivot points
if (pivots[pivotIndex+1] == null) {
int best = -1;
uint bestScore = 0;
// Actual number of nodes
int totCount = maxNodeIndex/pivotCount;
// Loop through all nodes
for (int j = 1; j < totCount; j++) {
// Find the minimum distance from the node to all existing pivot points
uint mx = 1 << 30;
for (int p = 0; p <= pivotIndex; p++) mx = System.Math.Min(mx, costs[j*pivotCount + p]);
// Pick the node which has the largest minimum distance to the existing pivot points
// (i.e pick the one furthest away from the existing ones)
GraphNode node = ((IPathInternals)floodPath).PathHandler.GetPathNode(j).node;
if ((mx > bestScore || best == -1) && node != null && !node.Destroyed && node.Walkable) {
best = j;
bestScore = mx;
}
}
if (best == -1) {
Debug.LogError("Failed generating random pivot points for heuristic optimizations");
return;
}
pivots[pivotIndex+1] = ((IPathInternals)floodPath).PathHandler.GetPathNode(best).node;
}
// Start next path
startCostCalculation(pivotIndex+1);
}
// Handle path pooling
_p.Release(this);
};
AstarPath.StartPath(floodPath, true);
};
if (mode != HeuristicOptimizationMode.RandomSpreadOut) {
// All calculated in parallel
for (int i = 0; i < pivots.Length; i++) {
startCostCalculation(i);
}
} else {
// Recursive and serial
startCostCalculation(0);
}
dirty = false;
}
///
/// Special case necessary for paths to unwalkable nodes right next to walkable nodes to be able to use good heuristics.
///
/// This will find all unwalkable nodes in all grid graphs with walkable nodes as neighbours
/// and set the cost to reach them from each of the pivots as the minimum of the cost to
/// reach the neighbours of each node.
///
/// See: ABPath.EndPointGridGraphSpecialCase
///
void ApplyGridGraphEndpointSpecialCase () {
#if !ASTAR_NO_GRID_GRAPH
var graphs = AstarPath.active.graphs;
for (int i = 0; i < graphs.Length; i++) {
var gg = graphs[i] as GridGraph;
if (gg != null) {
// Found a grid graph
var nodes = gg.nodes;
// Number of neighbours as an int
int mxnum = gg.neighbours == NumNeighbours.Four ? 4 : (gg.neighbours == NumNeighbours.Eight ? 8 : 6);
for (int z = 0; z < gg.depth; z++) {
for (int x = 0; x < gg.width; x++) {
var node = nodes[z*gg.width + x];
if (!node.Walkable) {
var pivotIndex = node.NodeIndex*pivotCount;
// Set all costs to reach this node to maximum
for (int piv = 0; piv < pivotCount; piv++) {
costs[pivotIndex + piv] = uint.MaxValue;
}
// Loop through all potential neighbours of the node
// and set the cost to reach it as the minimum
// of the costs to reach any of the adjacent nodes
for (int d = 0; d < mxnum; d++) {
int nx, nz;
if (gg.neighbours == NumNeighbours.Six) {
// Hexagon graph
nx = x + gg.neighbourXOffsets[GridGraph.hexagonNeighbourIndices[d]];
nz = z + gg.neighbourZOffsets[GridGraph.hexagonNeighbourIndices[d]];
} else {
nx = x + gg.neighbourXOffsets[d];
nz = z + gg.neighbourZOffsets[d];
}
// Check if the position is still inside the grid
if (nx >= 0 && nz >= 0 && nx < gg.width && nz < gg.depth) {
var adjacentNode = gg.nodes[nz*gg.width + nx];
if (adjacentNode.Walkable) {
for (int piv = 0; piv < pivotCount; piv++) {
uint cost = costs[adjacentNode.NodeIndex*pivotCount + piv] + gg.neighbourCosts[d];
costs[pivotIndex + piv] = System.Math.Min(costs[pivotIndex + piv], cost);
//Debug.DrawLine((Vector3)node.position, (Vector3)adjacentNode.position, Color.blue, 1);
}
}
}
}
// If no adjacent nodes were found
// set the cost to reach it back to zero
for (int piv = 0; piv < pivotCount; piv++) {
if (costs[pivotIndex + piv] == uint.MaxValue) {
costs[pivotIndex + piv] = 0;
}
}
}
}
}
}
}
#endif
}
public void OnDrawGizmos () {
if (pivots != null) {
for (int i = 0; i < pivots.Length; i++) {
Gizmos.color = new Color(159/255.0f, 94/255.0f, 194/255.0f, 0.8f);
if (pivots[i] != null && !pivots[i].Destroyed) {
Gizmos.DrawCube((Vector3)pivots[i].position, Vector3.one);
}
}
}
}
}
}