using UnityEngine;
using System.Collections.Generic;
using Pathfinding.RVO;
namespace Pathfinding.Examples {
[RequireComponent(typeof(MeshFilter))]
///
/// Lightweight RVO Circle Example.
/// Lightweight script for simulating agents in a circle trying to reach their antipodal positions.
/// This script, compared to using lots of RVOAgents shows the real power of the RVO simulator when
/// little other overhead (e.g GameObjects) is present.
///
/// For example with this script, I can simulate 5000 agents at around 50 fps on my laptop (with desired simulation fps = 10 and interpolation, 2 threads)
/// however when using prefabs, only instantiating the 5000 agents takes 10 seconds and it runs at around 5 fps.
///
/// This script will render the agents by generating a square for each agent combined into a single mesh with appropriate UV.
///
/// A few GUI buttons will be drawn by this script with which the user can change the number of agents.
///
[HelpURL("http://arongranberg.com/astar/documentation/stable/class_pathfinding_1_1_examples_1_1_lightweight_r_v_o.php")]
public class LightweightRVO : MonoBehaviour {
/// Number of agents created at start
public int agentCount = 100;
///
/// How large is the area where agents are placed.
/// For e.g the circle example, it corresponds
///
public float exampleScale = 100;
public enum RVOExampleType {
Circle,
Line,
Point,
RandomStreams,
Crossing
}
public RVOExampleType type = RVOExampleType.Circle;
/// Agent radius
public float radius = 3;
/// Max speed for an agent
public float maxSpeed = 2;
/// How far in the future too look for agents
public float agentTimeHorizon = 10;
[HideInInspector]
/// How far in the future too look for obstacles
public float obstacleTimeHorizon = 10;
/// Max number of neighbour agents to take into account
public int maxNeighbours = 10;
///
/// Offset from the agent position the actual drawn postition.
/// Used to get rid of z-buffer issues
///
public Vector3 renderingOffset = Vector3.up*0.1f;
/// Enable the debug flag for all agents
public bool debug = false;
/// Mesh for rendering
Mesh mesh;
/// Reference to the simulator in the scene
Pathfinding.RVO.Simulator sim;
/// All agents handled by this script
List agents;
/// Goals for each agent
List goals;
/// Color for each agent
List colors;
Vector3[] verts;
Vector2[] uv;
int[] tris;
Color[] meshColors;
Vector2[] interpolatedVelocities;
Vector2[] interpolatedRotations;
public void Start () {
mesh = new Mesh();
RVOSimulator rvoSim = FindObjectOfType(typeof(RVOSimulator)) as RVOSimulator;
if (rvoSim == null) {
Debug.LogError("No RVOSimulator could be found in the scene. Please add a RVOSimulator component to any GameObject");
return;
}
sim = rvoSim.GetSimulator();
GetComponent().mesh = mesh;
CreateAgents(agentCount);
}
public void OnGUI () {
if (GUILayout.Button("2")) CreateAgents(2);
if (GUILayout.Button("10")) CreateAgents(10);
if (GUILayout.Button("100")) CreateAgents(100);
if (GUILayout.Button("500")) CreateAgents(500);
if (GUILayout.Button("1000")) CreateAgents(1000);
if (GUILayout.Button("5000")) CreateAgents(5000);
GUILayout.Space(5);
if (GUILayout.Button("Random Streams")) {
type = RVOExampleType.RandomStreams;
CreateAgents(agents != null ? agents.Count : 100);
}
if (GUILayout.Button("Line")) {
type = RVOExampleType.Line;
CreateAgents(agents != null ? Mathf.Min(agents.Count, 100) : 10);
}
if (GUILayout.Button("Circle")) {
type = RVOExampleType.Circle;
CreateAgents(agents != null ? agents.Count : 100);
}
if (GUILayout.Button("Point")) {
type = RVOExampleType.Point;
CreateAgents(agents != null ? agents.Count : 100);
}
if (GUILayout.Button("Crossing")) {
type = RVOExampleType.Crossing;
CreateAgents(agents != null ? agents.Count : 100);
}
}
private float uniformDistance (float radius) {
float v = Random.value + Random.value;
if (v > 1) return radius * (2-v);
else return radius * v;
}
/// Create a number of agents in circle and restart simulation
public void CreateAgents (int num) {
this.agentCount = num;
agents = new List(agentCount);
goals = new List(agentCount);
colors = new List(agentCount);
sim.ClearAgents();
if (type == RVOExampleType.Circle) {
float circleRad = Mathf.Sqrt(agentCount * radius * radius * 4 / Mathf.PI) * exampleScale * 0.05f;
for (int i = 0; i < agentCount; i++) {
Vector3 pos = new Vector3(Mathf.Cos(i * Mathf.PI * 2.0f / agentCount), 0, Mathf.Sin(i * Mathf.PI * 2.0f / agentCount)) * circleRad * (1 + Random.value * 0.01f);
IAgent agent = sim.AddAgent(new Vector2(pos.x, pos.z), pos.y);
agents.Add(agent);
goals.Add(-pos);
colors.Add(AstarMath.HSVToRGB(i * 360.0f / agentCount, 0.8f, 0.6f));
}
} else if (type == RVOExampleType.Line) {
for (int i = 0; i < agentCount; i++) {
Vector3 pos = new Vector3((i % 2 == 0 ? 1 : -1) * exampleScale, 0, (i / 2) * radius * 2.5f);
IAgent agent = sim.AddAgent(new Vector2(pos.x, pos.z), pos.y);
agents.Add(agent);
goals.Add(new Vector3(-pos.x, pos.y, pos.z));
colors.Add(i % 2 == 0 ? Color.red : Color.blue);
}
} else if (type == RVOExampleType.Point) {
for (int i = 0; i < agentCount; i++) {
Vector3 pos = new Vector3(Mathf.Cos(i * Mathf.PI * 2.0f / agentCount), 0, Mathf.Sin(i * Mathf.PI * 2.0f / agentCount)) * exampleScale;
IAgent agent = sim.AddAgent(new Vector2(pos.x, pos.z), pos.y);
agents.Add(agent);
goals.Add(new Vector3(0, pos.y, 0));
colors.Add(AstarMath.HSVToRGB(i * 360.0f / agentCount, 0.8f, 0.6f));
}
} else if (type == RVOExampleType.RandomStreams) {
float circleRad = Mathf.Sqrt(agentCount * radius * radius * 4 / Mathf.PI) * exampleScale * 0.05f;
for (int i = 0; i < agentCount; i++) {
float angle = Random.value * Mathf.PI * 2.0f;
float targetAngle = Random.value * Mathf.PI * 2.0f;
Vector3 pos = new Vector3(Mathf.Cos(angle), 0, Mathf.Sin(angle)) * uniformDistance(circleRad);
IAgent agent = sim.AddAgent(new Vector2(pos.x, pos.z), pos.y);
agents.Add(agent);
goals.Add(new Vector3(Mathf.Cos(targetAngle), 0, Mathf.Sin(targetAngle)) * uniformDistance(circleRad));
colors.Add(AstarMath.HSVToRGB(targetAngle * Mathf.Rad2Deg, 0.8f, 0.6f));
}
} else if (type == RVOExampleType.Crossing) {
float distanceBetweenGroups = exampleScale * radius * 0.5f;
int directions = (int)Mathf.Sqrt(agentCount / 25f);
directions = Mathf.Max(directions, 2);
const int AgentsPerDistance = 10;
for (int i = 0; i < agentCount; i++) {
float angle = ((i % directions)/(float)directions) * Mathf.PI * 2.0f;
var dist = distanceBetweenGroups * ((i/(directions*AgentsPerDistance) + 1) + 0.3f*Random.value);
Vector3 pos = new Vector3(Mathf.Cos(angle), 0, Mathf.Sin(angle)) * dist;
IAgent agent = sim.AddAgent(new Vector2(pos.x, pos.z), pos.y);
agent.Priority = (i % directions) == 0 ? 1 : 0.01f;
agents.Add(agent);
goals.Add(-pos.normalized * distanceBetweenGroups * 3);
colors.Add(AstarMath.HSVToRGB(angle * Mathf.Rad2Deg, 0.8f, 0.6f));
}
}
SetAgentSettings();
verts = new Vector3[4*agents.Count];
uv = new Vector2[verts.Length];
tris = new int[agents.Count*2*3];
meshColors = new Color[verts.Length];
}
void SetAgentSettings () {
for (int i = 0; i < agents.Count; i++) {
IAgent agent = agents[i];
agent.Radius = radius;
agent.AgentTimeHorizon = agentTimeHorizon;
agent.ObstacleTimeHorizon = obstacleTimeHorizon;
agent.MaxNeighbours = maxNeighbours;
agent.DebugDraw = i == 0 && debug;
}
}
public void Update () {
if (agents == null || mesh == null) return;
if (agents.Count != goals.Count) {
Debug.LogError("Agent count does not match goal count");
return;
}
SetAgentSettings();
// Make sure the array is large enough
if (interpolatedVelocities == null || interpolatedVelocities.Length < agents.Count) {
var velocities = new Vector2[agents.Count];
var directions = new Vector2[agents.Count];
// Copy over the old velocities
if (interpolatedVelocities != null) for (int i = 0; i < interpolatedVelocities.Length; i++) velocities[i] = interpolatedVelocities[i];
if (interpolatedRotations != null) for (int i = 0; i < interpolatedRotations.Length; i++) directions[i] = interpolatedRotations[i];
interpolatedVelocities = velocities;
interpolatedRotations = directions;
}
for (int i = 0; i < agents.Count; i++) {
IAgent agent = agents[i];
// Move agent
// This is the responsibility of this script, not the RVO system
Vector2 pos = agent.Position;
var deltaPosition = Vector2.ClampMagnitude(agent.CalculatedTargetPoint - pos, agent.CalculatedSpeed * Time.deltaTime);
pos += deltaPosition;
agent.Position = pos;
// All agents are on the same plane
agent.ElevationCoordinate = 0;
// Set the desired velocity for all agents
var target = new Vector2(goals[i].x, goals[i].z);
var dist = (target - pos).magnitude;
agent.SetTarget(target, Mathf.Min(dist, maxSpeed), maxSpeed*1.1f);
interpolatedVelocities[i] += deltaPosition;
if (interpolatedVelocities[i].magnitude > maxSpeed*0.1f) {
interpolatedVelocities[i] = Vector2.ClampMagnitude(interpolatedVelocities[i], maxSpeed*0.1f);
interpolatedRotations[i] = Vector2.Lerp(interpolatedRotations[i], interpolatedVelocities[i], agent.CalculatedSpeed * Time.deltaTime*4f);
}
//Debug.DrawRay(new Vector3(pos.x, 0, pos.y), new Vector3(interpolatedVelocities[i].x, 0, interpolatedVelocities[i].y) * 10);
// Create a square with the "forward" direction along the agent's velocity
Vector3 forward = new Vector3(interpolatedRotations[i].x, 0, interpolatedRotations[i].y).normalized * agent.Radius;
if (forward == Vector3.zero) forward = new Vector3(0, 0, agent.Radius);
Vector3 right = Vector3.Cross(Vector3.up, forward);
Vector3 orig = new Vector3(agent.Position.x, agent.ElevationCoordinate, agent.Position.y) + renderingOffset;
int vc = 4*i;
int tc = 2*3*i;
verts[vc+0] = (orig + forward - right);
verts[vc+1] = (orig + forward + right);
verts[vc+2] = (orig - forward + right);
verts[vc+3] = (orig - forward - right);
uv[vc+0] = (new Vector2(0, 1));
uv[vc+1] = (new Vector2(1, 1));
uv[vc+2] = (new Vector2(1, 0));
uv[vc+3] = (new Vector2(0, 0));
meshColors[vc+0] = colors[i];
meshColors[vc+1] = colors[i];
meshColors[vc+2] = colors[i];
meshColors[vc+3] = colors[i];
tris[tc+0] = (vc + 0);
tris[tc+1] = (vc + 1);
tris[tc+2] = (vc + 2);
tris[tc+3] = (vc + 0);
tris[tc+4] = (vc + 2);
tris[tc+5] = (vc + 3);
}
//Update the mesh
mesh.Clear();
mesh.vertices = verts;
mesh.uv = uv;
mesh.colors = meshColors;
mesh.triangles = tris;
mesh.RecalculateNormals();
}
}
}