using UnityEngine;
using System.Collections;
using System.Collections.Generic;
using Pathfinding.RVO;
namespace Pathfinding.Legacy {
[RequireComponent(typeof(Seeker))]
[AddComponentMenu("Pathfinding/Legacy/AI/Legacy RichAI (3D, for navmesh)")]
///
/// Advanced AI for navmesh based graphs.
///
/// Deprecated: Use the RichAI class instead. This class only exists for compatibility reasons.
///
[HelpURL("http://arongranberg.com/astar/documentation/stable/class_pathfinding_1_1_legacy_1_1_legacy_rich_a_i.php")]
public class LegacyRichAI : RichAI {
///
/// Use a 3rd degree equation for calculating slowdown acceleration instead of a 2nd degree.
/// A 3rd degree equation can also make sure that the velocity when reaching the target is roughly zero and therefore
/// it will have a more direct stop. In contrast solving a 2nd degree equation which will just make sure the target is reached but
/// will usually have a larger velocity when reaching the target and therefore look more "bouncy".
///
public bool preciseSlowdown = true;
public bool raycastingForGroundPlacement = false;
///
/// Current velocity of the agent.
/// Includes eventual velocity due to gravity
///
new Vector3 velocity;
Vector3 lastTargetPoint;
Vector3 currentTargetDirection;
protected override void Awake () {
base.Awake();
if (rvoController != null) {
if (rvoController is LegacyRVOController) (rvoController as LegacyRVOController).enableRotation = false;
else Debug.LogError("The LegacyRichAI component only works with the legacy RVOController, not the latest one. Please upgrade this component", this);
}
}
/// Smooth delta time to avoid getting overly affected by e.g GC
static float deltaTime;
/// Update is called once per frame
protected override void Update () {
deltaTime = Mathf.Min(Time.smoothDeltaTime*2, Time.deltaTime);
if (richPath != null) {
//System.Diagnostics.Stopwatch w = new System.Diagnostics.Stopwatch();
//w.Start();
RichPathPart pt = richPath.GetCurrentPart();
var fn = pt as RichFunnel;
if (fn != null) {
//Clear buffers for reuse
Vector3 position = UpdateTarget(fn);
//tr.position = ps;
//Only get walls every 5th frame to save on performance
if (Time.frameCount % 5 == 0 && wallForce > 0 && wallDist > 0) {
wallBuffer.Clear();
fn.FindWalls(wallBuffer, wallDist);
}
/*for (int i=0;i 1) {
* if ((buffer[tgIndex]-tr.position).sqrMagnitude < pickNextWaypointDist*pickNextWaypointDist) {
* tgIndex++;
* }
* }*/
//Target point
Vector3 tg = nextCorners[tgIndex];
Vector3 dir = tg-position;
dir.y = 0;
bool passedTarget = Vector3.Dot(dir, currentTargetDirection) < 0;
//Check if passed target in another way
if (passedTarget && nextCorners.Count-tgIndex > 1) {
tgIndex++;
tg = nextCorners[tgIndex];
}
if (tg != lastTargetPoint) {
currentTargetDirection = (tg - position);
currentTargetDirection.y = 0;
currentTargetDirection.Normalize();
lastTargetPoint = tg;
//Debug.DrawRay (tr.position, Vector3.down*2,Color.blue,0.2f);
}
//Direction to target
dir = (tg-position);
dir.y = 0;
float magn = dir.magnitude;
//Write out for other scripts to read
distanceToSteeringTarget = magn;
//Normalize
dir = magn == 0 ? Vector3.zero : dir/magn;
Vector3 normdir = dir;
Vector3 force = Vector3.zero;
if (wallForce > 0 && wallDist > 0) {
float wLeft = 0;
float wRight = 0;
for (int i = 0; i < wallBuffer.Count; i += 2) {
Vector3 closest = VectorMath.ClosestPointOnSegment(wallBuffer[i], wallBuffer[i+1], tr.position);
float dist = (closest-position).sqrMagnitude;
if (dist > wallDist*wallDist) continue;
Vector3 tang = (wallBuffer[i+1]-wallBuffer[i]).normalized;
//Using the fact that all walls are laid out clockwise (seeing from inside)
//Then left and right (ish) can be figured out like this
float dot = Vector3.Dot(dir, tang) * (1 - System.Math.Max(0, (2*(dist / (wallDist*wallDist))-1)));
if (dot > 0) wRight = System.Math.Max(wRight, dot);
else wLeft = System.Math.Max(wLeft, -dot);
}
Vector3 norm = Vector3.Cross(Vector3.up, dir);
force = norm*(wRight-wLeft);
//Debug.DrawRay (tr.position, force, Color.cyan);
}
//Is the endpoint of the path (part) the current target point
bool endPointIsTarget = lastCorner && nextCorners.Count-tgIndex == 1;
if (endPointIsTarget) {
//Use 2nd or 3rd degree motion equation to figure out acceleration to reach target in "exact" [slowdownTime] seconds
//Clamp to avoid divide by zero
if (slowdownTime < 0.001f) {
slowdownTime = 0.001f;
}
Vector3 diff = tg - position;
diff.y = 0;
if (preciseSlowdown) {
//{ t = slowdownTime
//{ diff = vt + at^2/2 + qt^3/6
//{ 0 = at + qt^2/2
//{ solve for a
dir = (6*diff - 4*slowdownTime*velocity)/(slowdownTime*slowdownTime);
} else {
dir = 2*(diff - slowdownTime*velocity)/(slowdownTime*slowdownTime);
}
dir = Vector3.ClampMagnitude(dir, acceleration);
force *= System.Math.Min(magn/0.5f, 1);
if (magn < endReachedDistance) {
//END REACHED
NextPart();
}
} else {
dir *= acceleration;
}
//Debug.DrawRay (tr.position+Vector3.up, dir*3, Color.blue);
velocity += (dir + force*wallForce)*deltaTime;
if (slowWhenNotFacingTarget) {
float dot = (Vector3.Dot(normdir, tr.forward)+0.5f)*(1.0f/1.5f);
//velocity = Vector3.ClampMagnitude (velocity, maxSpeed * Mathf.Max (dot, 0.2f) );
float xzmagn = Mathf.Sqrt(velocity.x*velocity.x + velocity.z*velocity.z);
float prevy = velocity.y;
velocity.y = 0;
float mg = Mathf.Min(xzmagn, maxSpeed * Mathf.Max(dot, 0.2f));
velocity = Vector3.Lerp(tr.forward * mg, velocity.normalized * mg, Mathf.Clamp(endPointIsTarget ? (magn*2) : 0, 0.5f, 1.0f));
velocity.y = prevy;
} else {
// Clamp magnitude on the XZ axes
float xzmagn = Mathf.Sqrt(velocity.x*velocity.x + velocity.z*velocity.z);
xzmagn = maxSpeed/xzmagn;
if (xzmagn < 1) {
velocity.x *= xzmagn;
velocity.z *= xzmagn;
//Vector3.ClampMagnitude (velocity, maxSpeed);
}
}
//Debug.DrawLine (tr.position, tg, lastCorner ? Color.red : Color.green);
if (endPointIsTarget) {
Vector3 trotdir = Vector3.Lerp(velocity, currentTargetDirection, System.Math.Max(1 - magn*2, 0));
RotateTowards(trotdir);
} else {
RotateTowards(velocity);
}
//Applied after rotation to enable proper checks on if velocity is zero
velocity += deltaTime * gravity;
if (rvoController != null && rvoController.enabled) {
//Use RVOController
tr.position = position;
rvoController.Move(velocity);
} else
if (controller != null && controller.enabled) {
//Use CharacterController
tr.position = position;
controller.Move(velocity * deltaTime);
} else {
//Use Transform
float lasty = position.y;
position += velocity*deltaTime;
position = RaycastPosition(position, lasty);
tr.position = position;
}
} else {
if (rvoController != null && rvoController.enabled) {
//Use RVOController
rvoController.Move(Vector3.zero);
}
}
if (pt is RichSpecial) {
if (!traversingOffMeshLink) {
StartCoroutine(TraverseSpecial(pt as RichSpecial));
}
}
//w.Stop();
//Debug.Log ((w.Elapsed.TotalMilliseconds*1000));
} else {
if (rvoController != null && rvoController.enabled) {
//Use RVOController
rvoController.Move(Vector3.zero);
} else
if (controller != null && controller.enabled) {
} else {
tr.position = RaycastPosition(tr.position, tr.position.y);
}
}
UpdateVelocity();
lastDeltaTime = Time.deltaTime;
}
new Vector3 RaycastPosition (Vector3 position, float lasty) {
if (raycastingForGroundPlacement) {
RaycastHit hit;
float up = Mathf.Max(height*0.5f, lasty-position.y+height*0.5f);
if (Physics.Raycast(position+Vector3.up*up, Vector3.down, out hit, up, groundMask)) {
if (hit.distance < up) {
//grounded
position = hit.point;//.up * -(hit.distance-centerOffset);
velocity.y = 0;
}
}
}
return position;
}
/// Rotates along the Y-axis the transform towards trotdir
bool RotateTowards (Vector3 trotdir) {
trotdir.y = 0;
if (trotdir != Vector3.zero) {
Quaternion rot = tr.rotation;
Vector3 trot = Quaternion.LookRotation(trotdir).eulerAngles;
Vector3 eul = rot.eulerAngles;
eul.y = Mathf.MoveTowardsAngle(eul.y, trot.y, rotationSpeed*deltaTime);
tr.rotation = Quaternion.Euler(eul);
//Magic number, should expose as variable
return Mathf.Abs(eul.y-trot.y) < 5f;
}
return false;
}
}
}